变形
机器人
机制(生物学)
运动学
计算机科学
蚯蚓
爬行
工作(物理)
模拟
工程类
人工智能
机械工程
物理
生物
生态学
解剖
经典力学
量子力学
作者
Yudong Luo,Na Zhao,Yantao Shen,Peng Li
出处
期刊:Journal of Mechanisms and Robotics
[ASME International]
日期:2022-04-26
卷期号:15 (1)
被引量:12
摘要
Abstract Inspired by natural earthworms’ locomotion mechanism, this paper investigates how the earthworm’s muscle works and presents the approach to mimic segmental muscle by employing rigid elements-based morphing structures. Specifically, the proposed earthworm-like robot employs a class of 2D rigid elements and their array to achieve programable bidirectional 3D deformation, making the formed mechanism precisely controllable and work effectively, thus facilitating the robot’s peristaltic locomotion more efficient. To comprehensively investigate the morphing structure and its formed earthworm-like robot, the kinematics, mechanics, deformation-dependent locomotion framework with its adapted model, as well as the factors that affect the optimal velocity are developed and presented. Extensive simulations and experiments on the proposed robot are performed. The results verify the effectiveness of the morphing mechanism and it enabled earthworm-like robot and the consistency between the proposed locomotion model and the practical tests. The results also prove that regardless of the condition of the contact surface, the optimal phase shift angle can be achieved when each segment approximately contracts and relaxes once in one wavelength period. Our developed prototype achieves a speed of multiple body lengths per minute, which is very competitive compared with most developed earthworm-like robots.
科研通智能强力驱动
Strongly Powered by AbleSci AI