Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology

组织学 免疫系统 肝细胞癌 医学 病理 生物 免疫学 内科学
作者
Qinghe Zeng,Christophe Klein,Stefano Caruso,Pascale Maillé,Narmin Ghaffari Laleh,Danièle Sommacale,Alexis Laurent,Giuliana Amaddeo,David Gentien,Audrey Rapinat,Hélène Regnault,Cécile Charpy,Công Trung Nguyễn,Christophe Tournigand,Raffaele Brustia,Jean‐Michel Pawlotsky,Jakob Nikolas Kather,Maria Chiara Maiuri,Nicolas Loménie,Julien Caldéraro
出处
期刊:Journal of Hepatology [Elsevier]
卷期号:77 (1): 116-127 被引量:100
标识
DOI:10.1016/j.jhep.2022.01.018
摘要

Patients with hepatocellular carcinoma (HCC) displaying overexpression of immune gene signatures are likely to be more sensitive to immunotherapy, however, the use of such signatures in clinical settings remains challenging. We thus aimed, using artificial intelligence (AI) on whole-slide digital histological images, to develop models able to predict the activation of 6 immune gene signatures.AI models were trained and validated in 2 different series of patients with HCC treated by surgical resection. Gene expression was investigated using RNA sequencing or NanoString technology. Three deep learning approaches were investigated: patch-based, classic MIL and CLAM. Pathological reviewing of the most predictive tissue areas was performed for all gene signatures.The CLAM model showed the best overall performance in the discovery series. Its best-fold areas under the receiver operating characteristic curves (AUCs) for the prediction of tumors with upregulation of the immune gene signatures ranged from 0.78 to 0.91. The different models generalized well in the validation dataset with AUCs ranging from 0.81 to 0.92. Pathological analysis of highly predictive tissue areas showed enrichment in lymphocytes, plasma cells, and neutrophils.We have developed and validated AI-based pathology models able to predict the activation of several immune and inflammatory gene signatures. Our approach also provides insights into the morphological features that impact the model predictions. This proof-of-concept study shows that AI-based pathology could represent a novel type of biomarker that will ease the translation of our biological knowledge of HCC into clinical practice.Immune and inflammatory gene signatures may be associated with increased sensitivity to immunotherapy in patients with advanced hepatocellular carcinoma. In the present study, the use of artificial intelligence-based pathology enabled us to predict the activation of these signatures directly from histology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肚皮完成签到 ,获得积分0
4秒前
6秒前
SJJ应助June采纳,获得30
8秒前
小透明应助June采纳,获得30
8秒前
9秒前
9秒前
上官若男应助liao采纳,获得10
11秒前
PubLing_完成签到,获得积分10
12秒前
hexy629发布了新的文献求助20
14秒前
科研通AI6应助ll采纳,获得10
14秒前
神奇小鹿完成签到 ,获得积分10
14秒前
Lucas应助wss采纳,获得10
14秒前
15秒前
干净的谷南完成签到,获得积分10
16秒前
成就凡双应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
元谷雪应助科研通管家采纳,获得10
17秒前
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
成就凡双应助科研通管家采纳,获得10
17秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
小马驹完成签到,获得积分10
18秒前
18秒前
黑皮金刚完成签到,获得积分10
19秒前
Jasper应助李蕊采纳,获得10
20秒前
JamesPei应助小乐儿~采纳,获得10
20秒前
小正发布了新的文献求助10
20秒前
24秒前
星辰大海应助木子采纳,获得10
26秒前
26秒前
阿良完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527