Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology

组织学 免疫系统 肝细胞癌 基因 医学 病理 生物 癌症研究 免疫学 遗传学
作者
Qinghe Zeng,Christophe Klein,Stefano Caruso,Pascale Maillé,Narmin Ghaffari Laleh,Danièle Sommacale,Alexis Laurent,Giuliana Amaddeo,David Gentien,Audrey Rapinat,Hélène Regnault,Cécile Charpy,Công Trung Nguyễn,Christophe Tournigand,Raffaele Brustia,Jean‐Michel Pawlotsky,Jakob Nikolas Kather,Maria Chiara Maiuri,Nicolas Loménie,Julien Caldéraro
出处
期刊:Journal of Hepatology [Elsevier]
卷期号:77 (1): 116-127 被引量:60
标识
DOI:10.1016/j.jhep.2022.01.018
摘要

Background & Aims

Patients with hepatocellular carcinoma (HCC) displaying overexpression of immune gene signatures are likely to be more sensitive to immunotherapy, however, the use of such signatures in clinical settings remains challenging. We thus aimed, using artificial intelligence (AI) on whole-slide digital histological images, to develop models able to predict the activation of 6 immune gene signatures.

Methods

AI models were trained and validated in 2 different series of patients with HCC treated by surgical resection. Gene expression was investigated using RNA sequencing or NanoString technology. Three deep learning approaches were investigated: patch-based, classic MIL and CLAM. Pathological reviewing of the most predictive tissue areas was performed for all gene signatures.

Results

The CLAM model showed the best overall performance in the discovery series. Its best-fold areas under the receiver operating characteristic curves (AUCs) for the prediction of tumors with upregulation of the immune gene signatures ranged from 0.78 to 0.91. The different models generalized well in the validation dataset with AUCs ranging from 0.81 to 0.92. Pathological analysis of highly predictive tissue areas showed enrichment in lymphocytes, plasma cells, and neutrophils.

Conclusion

We have developed and validated AI-based pathology models able to predict the activation of several immune and inflammatory gene signatures. Our approach also provides insights into the morphological features that impact the model predictions. This proof-of-concept study shows that AI-based pathology could represent a novel type of biomarker that will ease the translation of our biological knowledge of HCC into clinical practice.

Lay summary

Immune and inflammatory gene signatures may be associated with increased sensitivity to immunotherapy in patients with advanced hepatocellular carcinoma. In the present study, the use of artificial intelligence-based pathology enabled us to predict the activation of these signatures directly from histology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐实验人完成签到,获得积分10
2秒前
2秒前
死生长叹发布了新的文献求助10
2秒前
3秒前
3秒前
Q甜完成签到,获得积分10
3秒前
Hyperme发布了新的文献求助10
4秒前
4秒前
Singularity举报漂亮的念双求助涉嫌违规
5秒前
激动的新筠完成签到,获得积分10
5秒前
牧紫菱完成签到,获得积分10
5秒前
6秒前
大模型应助霸气擎宇采纳,获得30
7秒前
8秒前
二号发布了新的文献求助10
8秒前
HhhhL发布了新的文献求助10
10秒前
李健应助jgpiao采纳,获得10
11秒前
Akim应助博士小白早日毕业采纳,获得10
11秒前
11秒前
舒适的幻然完成签到,获得积分10
12秒前
科研通AI2S应助小熊采纳,获得30
13秒前
小杨完成签到,获得积分20
13秒前
日落发布了新的文献求助10
13秒前
13秒前
14秒前
逍遥自在完成签到,获得积分10
14秒前
英俊的铭应助jjdeng采纳,获得10
14秒前
HhhhL完成签到,获得积分10
16秒前
16秒前
Hyperme完成签到,获得积分20
17秒前
yang应助好心情采纳,获得10
17秒前
Rr完成签到,获得积分10
18秒前
19秒前
Candy发布了新的文献求助10
19秒前
mhx发布了新的文献求助10
20秒前
尹宁完成签到,获得积分10
20秒前
无花果应助tutu采纳,获得10
20秒前
在水一方应助HhhhL采纳,获得10
20秒前
脑洞疼应助jgpiao采纳,获得10
21秒前
脑洞疼应助TRNA采纳,获得10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135520
求助须知:如何正确求助?哪些是违规求助? 2786434
关于积分的说明 7777268
捐赠科研通 2442340
什么是DOI,文献DOI怎么找? 1298524
科研通“疑难数据库(出版商)”最低求助积分说明 625143
版权声明 600847