杰纳斯
材料科学
膜
润湿
生物传感器
微流控
纳米技术
电导率
体积热力学
光电子学
复合材料
化学
生物化学
量子力学
物理
物理化学
作者
Hong Xiao,Huimin Wu,Chengcheng Wang,Xinran Zhang,Chenjie Wei,Zhi‐Kang Xu,Dajing Chen,Xiao‐Jun Huang
标识
DOI:10.1021/acsami.1c16820
摘要
Highly sensitive and selective analysis of sweat at ultra-low sample volume remains a major challenge in the field of biosensing. Manipulation of small volumes of liquid for efficient sampling is essential to address this challenge. A hybrid Janus membrane with dual-asymmetry integration of wettability and conductivity is developed for regulated micro-volume liquid transport in wearable sweat biosensing. Unlike the uncontrollable liquid diffusion in a conventional porous membrane, the asymmetric wettability of porous Janus membrane leads to unique unidirectional liquid transport with high breakthrough pressure (1737.66 Pa) and fast self-pumping rate (35.94 μL/min) for micro-volume liquid sampling. The asymmetric conductive layer shows excellent flexible conductivity, anti-interference of friction, and efficient electrochemical interface due to the in situ generation of gold nanoparticles on one side of the membrane. The fabricated Pt-enzyme electrodes on the membrane promises effective testing range, great selectivity, and high sensitivity and accuracy (correlation efficiency, glucose: R2 = 0.999, lactate: R2 = 0.997), enabling ultra-low volume (∼0.15 μL) real time measurements on the skin surface. The innovative Janus membrane with unidirectional, self-pumping, and anti-interference performance provides a new strategy for miniaturized wearable microfluidic sweat electrochemical biosensor preparation in athletic performance evaluation, health monitoring, disease diagnosis, intelligent medicine, and so forth.
科研通智能强力驱动
Strongly Powered by AbleSci AI