Hybrid Janus Membrane with Dual-Asymmetry Integration of Wettability and Conductivity for Ultra-Low-Volume Sweat Sensing

杰纳斯 材料科学 润湿 生物传感器 微流控 纳米技术 电导率 体积热力学 光电子学 复合材料 化学 生物化学 量子力学 物理 物理化学
作者
Hong Xiao,Huimin Wu,Chengcheng Wang,Xinran Zhang,Chenjie Wei,Zhi‐Kang Xu,Dajing Chen,Xiao‐Jun Huang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (7): 9644-9654 被引量:35
标识
DOI:10.1021/acsami.1c16820
摘要

Highly sensitive and selective analysis of sweat at ultra-low sample volume remains a major challenge in the field of biosensing. Manipulation of small volumes of liquid for efficient sampling is essential to address this challenge. A hybrid Janus membrane with dual-asymmetry integration of wettability and conductivity is developed for regulated micro-volume liquid transport in wearable sweat biosensing. Unlike the uncontrollable liquid diffusion in a conventional porous membrane, the asymmetric wettability of porous Janus membrane leads to unique unidirectional liquid transport with high breakthrough pressure (1737.66 Pa) and fast self-pumping rate (35.94 μL/min) for micro-volume liquid sampling. The asymmetric conductive layer shows excellent flexible conductivity, anti-interference of friction, and efficient electrochemical interface due to the in situ generation of gold nanoparticles on one side of the membrane. The fabricated Pt-enzyme electrodes on the membrane promises effective testing range, great selectivity, and high sensitivity and accuracy (correlation efficiency, glucose: R2 = 0.999, lactate: R2 = 0.997), enabling ultra-low volume (∼0.15 μL) real time measurements on the skin surface. The innovative Janus membrane with unidirectional, self-pumping, and anti-interference performance provides a new strategy for miniaturized wearable microfluidic sweat electrochemical biosensor preparation in athletic performance evaluation, health monitoring, disease diagnosis, intelligent medicine, and so forth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
janice发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
2秒前
3秒前
叶财财发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
不呐呐发布了新的文献求助30
5秒前
ding应助enen采纳,获得10
6秒前
6秒前
陈晓旭发布了新的文献求助10
6秒前
东东发布了新的文献求助10
6秒前
SciGPT应助emilybei采纳,获得10
7秒前
刚国忠发布了新的文献求助10
7秒前
叶财财完成签到,获得积分10
8秒前
Xu发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
zyfzyf完成签到,获得积分10
8秒前
科研通AI6应助川川采纳,获得10
9秒前
9秒前
科研通AI6应助火火木采纳,获得30
10秒前
will完成签到,获得积分10
10秒前
Hello应助小田睡不醒采纳,获得10
10秒前
10秒前
香蕉觅云应助荒野风采纳,获得10
10秒前
11秒前
11秒前
阳光发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
12秒前
13秒前
孔踏歌完成签到,获得积分10
13秒前
13秒前
Tingting完成签到 ,获得积分10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781