材料科学
脚手架
血管生成
生物医学工程
骨愈合
细胞生物学
纳米技术
癌症研究
解剖
生物
医学
作者
Yujie Ha,Xiaojun Ma,Shikai Li,Tao Li,S. L. Niu,Yuhan Qian,Muhammad Shafiq,Jinwu Wang,Xiaojun Zhou,Chuanglong He
标识
DOI:10.1002/adfm.202200011
摘要
Abstract Microchannel networks within engineered 3D scaffold can allow nutrient exchange and rapid blood vessels formation. However, fabrication of a bone microenvironment‐mimicking scaffold with hierarchical micro/nanofibrous and microchannel structures is still a challenge. Herein, inspired by structural and functional cues of bone remodeling, a microchannel networks‐enriched nanofibrous scaffold by using 3D printing and thermally induced phase separation techniques, which can facilitate cells migration and nutrients transportation, is developed. The customizable vascular‐like structure of polycaprolactone within the nanofibrous gelatin‐silica scaffold is fabricated using 3D‐printed sacrificial templates, while dimethyloxalylglycine (DMOG)‐loaded mesoporous silica nanoparticles (MSNs) located on the scaffold surface and bone forming peptide‐1 (BFP)‐loaded MSNs embedded in the scaffold are implemented for sequential release of DMOG and BFP. The cell experiments show that dual‐drug delivery scaffold (DBM/GP) promotes angiogenesis by stimulating migration, tube formation, and angiogenesis‐related genes/protein expression of endothelial cells, and osteogenesis by promoting osteo‐related genes expression and mineral deposition of osteoblasts. Additionally, DBM/GP scaffold facilitates the angiogenic activity of osteoblasts by activating phosphatidylinositol 3‐kinase/protein kinase B/hypoxia inducible factor‐1α pathway. Furthermore, enhanced vascularization and bone regeneration of DBM/GP scaffold are demonstrated via subcutaneous and skull defect models. Overall, this study reveals that the bone microenvironment‐mimetic dual‐drug delivery scaffold provides a promising strategy for bone defects treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI