Safe Exploration in Wireless Security: A Safe Reinforcement Learning Algorithm With Hierarchical Structure

强化学习 计算机科学 增强学习 人工智能 机器学习 卷积神经网络 理论(学习稳定性) 无线网络 无线 算法 电信
作者
Xiaozhen Lu,Liang Xiao,Guohang Niu,Xiangyang Ji,Qian Wang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:17: 732-743 被引量:24
标识
DOI:10.1109/tifs.2022.3149396
摘要

Most safe reinforcement learning (RL) algorithms depend on the accurate reward that is rarely available in wireless security applications and suffer from severe performance degradation for the learning agents that have to choose the policy from a large action set. In this paper, we propose a safe RL algorithm, which uses a policy priority-based hierarchical structure to divide each policy into sub-policies with different selection priorities and thus compresses the action set. By applying inter-agent transfer learning to initialize the learning parameters, this algorithm accelerates the initial exploration of the optimal policy. Based on a security criterion that evaluates the risk value, the sub-policy distribution formulation avoids the dangerous sub-policies that cause learning failure such as severe network security problems in wireless security applications, e.g., Internet services interruption. We also propose a deep safe RL and design four deep neural networks in each sub-policy selection to further improve the learning efficiency for the learning agents that support four convolutional neural networks (CNNs): The Q-network evaluates the long-term expected reward of each sub-policy under the current state, and the E-network evaluates the long-term risk value. The target Q and E-networks update the learning parameters of the corresponding CNN to improve the policy exploration stability. As a case study, our proposed safe RL algorithms are implemented in the anti-jamming communication of unmanned aerial vehicles (UAVs) to select the frequency channel and transmit power to the ground node. Experimental results show that our proposed schemes significantly improve the UAV communication performance, save the UAV energy and increase the reward compared with the benchmark against jamming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于彦祖应助雪白雁山采纳,获得50
刚刚
香蕉觅云应助初滞采纳,获得10
1秒前
小星发布了新的文献求助10
1秒前
1秒前
y彤发布了新的文献求助10
1秒前
CodeCraft应助Valar采纳,获得10
2秒前
3秒前
黄辉冯完成签到,获得积分10
4秒前
5秒前
豆沙冰发布了新的文献求助10
6秒前
6秒前
乐乐应助nemo采纳,获得10
6秒前
瘦瘦发布了新的文献求助10
6秒前
6秒前
朴实海亦完成签到,获得积分10
7秒前
古芍昂完成签到 ,获得积分10
7秒前
Ghostghost完成签到,获得积分10
7秒前
7秒前
宇文天思发布了新的文献求助10
7秒前
再睡一夏发布了新的文献求助10
8秒前
VV发布了新的文献求助10
8秒前
8秒前
研友_Zl1Da8完成签到,获得积分10
8秒前
鲤鱼睿渊发布了新的文献求助10
8秒前
9秒前
9秒前
爆米花应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
10秒前
李健应助科研通管家采纳,获得10
10秒前
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得20
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
zky完成签到,获得积分10
11秒前
大耳朵小医生完成签到,获得积分10
11秒前
南村群童欺我老无力完成签到,获得积分10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147394
求助须知:如何正确求助?哪些是违规求助? 2798622
关于积分的说明 7830067
捐赠科研通 2455346
什么是DOI,文献DOI怎么找? 1306770
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587