Safe Exploration in Wireless Security: A Safe Reinforcement Learning Algorithm With Hierarchical Structure

强化学习 计算机科学 增强学习 人工智能 机器学习 卷积神经网络 理论(学习稳定性) 无线网络 无线 算法 电信
作者
Xiaozhen Lu,Liang Xiao,Guohang Niu,Xiangyang Ji,Qian Wang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:17: 732-743 被引量:34
标识
DOI:10.1109/tifs.2022.3149396
摘要

Most safe reinforcement learning (RL) algorithms depend on the accurate reward that is rarely available in wireless security applications and suffer from severe performance degradation for the learning agents that have to choose the policy from a large action set. In this paper, we propose a safe RL algorithm, which uses a policy priority-based hierarchical structure to divide each policy into sub-policies with different selection priorities and thus compresses the action set. By applying inter-agent transfer learning to initialize the learning parameters, this algorithm accelerates the initial exploration of the optimal policy. Based on a security criterion that evaluates the risk value, the sub-policy distribution formulation avoids the dangerous sub-policies that cause learning failure such as severe network security problems in wireless security applications, e.g., Internet services interruption. We also propose a deep safe RL and design four deep neural networks in each sub-policy selection to further improve the learning efficiency for the learning agents that support four convolutional neural networks (CNNs): The Q-network evaluates the long-term expected reward of each sub-policy under the current state, and the E-network evaluates the long-term risk value. The target Q and E-networks update the learning parameters of the corresponding CNN to improve the policy exploration stability. As a case study, our proposed safe RL algorithms are implemented in the anti-jamming communication of unmanned aerial vehicles (UAVs) to select the frequency channel and transmit power to the ground node. Experimental results show that our proposed schemes significantly improve the UAV communication performance, save the UAV energy and increase the reward compared with the benchmark against jamming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助幸福的杨小夕采纳,获得10
1秒前
韩麒嘉完成签到 ,获得积分10
3秒前
聪慧的凝海完成签到 ,获得积分0
12秒前
12秒前
wwb发布了新的文献求助10
15秒前
phil完成签到 ,获得积分10
15秒前
23秒前
高高菠萝完成签到 ,获得积分10
23秒前
滴滴滴完成签到 ,获得积分10
23秒前
yangsi完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
30秒前
酷炫葵阴发布了新的文献求助10
35秒前
ORANGE完成签到,获得积分10
37秒前
思源应助松松采纳,获得20
41秒前
共享精神应助酷炫葵阴采纳,获得10
43秒前
丝丢皮得完成签到 ,获得积分10
44秒前
45秒前
xfy完成签到,获得积分10
49秒前
阳炎完成签到,获得积分10
51秒前
行云流水完成签到,获得积分10
52秒前
53秒前
冷酷尔琴发布了新的文献求助10
57秒前
青水完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
冷酷尔琴完成签到,获得积分10
1分钟前
onevip完成签到,获得积分0
1分钟前
小莫完成签到 ,获得积分10
1分钟前
1分钟前
theseus完成签到,获得积分10
1分钟前
胡楠完成签到,获得积分10
1分钟前
北国雪未消完成签到 ,获得积分10
1分钟前
李振博完成签到 ,获得积分10
1分钟前
1分钟前
雪妮完成签到 ,获得积分10
1分钟前
松松发布了新的文献求助20
1分钟前
1分钟前
iwsaml完成签到 ,获得积分10
1分钟前
Caden完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022