Safe Exploration in Wireless Security: A Safe Reinforcement Learning Algorithm With Hierarchical Structure

强化学习 计算机科学 增强学习 人工智能 机器学习 卷积神经网络 理论(学习稳定性) 无线网络 无线 算法 电信
作者
Xiaozhen Lu,Liang Xiao,Guohang Niu,Xiangyang Ji,Qian Wang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:17: 732-743 被引量:34
标识
DOI:10.1109/tifs.2022.3149396
摘要

Most safe reinforcement learning (RL) algorithms depend on the accurate reward that is rarely available in wireless security applications and suffer from severe performance degradation for the learning agents that have to choose the policy from a large action set. In this paper, we propose a safe RL algorithm, which uses a policy priority-based hierarchical structure to divide each policy into sub-policies with different selection priorities and thus compresses the action set. By applying inter-agent transfer learning to initialize the learning parameters, this algorithm accelerates the initial exploration of the optimal policy. Based on a security criterion that evaluates the risk value, the sub-policy distribution formulation avoids the dangerous sub-policies that cause learning failure such as severe network security problems in wireless security applications, e.g., Internet services interruption. We also propose a deep safe RL and design four deep neural networks in each sub-policy selection to further improve the learning efficiency for the learning agents that support four convolutional neural networks (CNNs): The Q-network evaluates the long-term expected reward of each sub-policy under the current state, and the E-network evaluates the long-term risk value. The target Q and E-networks update the learning parameters of the corresponding CNN to improve the policy exploration stability. As a case study, our proposed safe RL algorithms are implemented in the anti-jamming communication of unmanned aerial vehicles (UAVs) to select the frequency channel and transmit power to the ground node. Experimental results show that our proposed schemes significantly improve the UAV communication performance, save the UAV energy and increase the reward compared with the benchmark against jamming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
扶桑发布了新的文献求助10
1秒前
Hello应助自信念云采纳,获得10
2秒前
3秒前
Asteria完成签到,获得积分10
5秒前
仲达发布了新的文献求助10
5秒前
5秒前
能干的邹完成签到 ,获得积分10
5秒前
所所应助王梦豪采纳,获得10
6秒前
6秒前
6秒前
Jasper应助董豆豆采纳,获得10
7秒前
叽里呱啦完成签到 ,获得积分10
8秒前
坦率的路人完成签到,获得积分10
8秒前
清脆的土豆完成签到,获得积分0
9秒前
易逢春发布了新的文献求助10
9秒前
10秒前
领导范儿应助shinn采纳,获得10
11秒前
内向寒云发布了新的文献求助10
11秒前
11秒前
Mr.Jian完成签到,获得积分10
12秒前
12秒前
猛猛冲完成签到,获得积分10
13秒前
研友_ZGjRjn发布了新的文献求助10
13秒前
smottom应助斯文的傲珊采纳,获得10
14秒前
淦淦完成签到,获得积分20
14秒前
16秒前
打打应助欣慰的乌冬面采纳,获得10
17秒前
SUN应助宋宋宋2采纳,获得10
17秒前
19秒前
大梅子清清淡淡完成签到,获得积分10
19秒前
乐乐应助carnationli采纳,获得10
19秒前
22秒前
123456发布了新的文献求助10
24秒前
25秒前
25秒前
shinn发布了新的文献求助10
25秒前
科研通AI2S应助wjx采纳,获得10
27秒前
科研通AI2S应助之一采纳,获得10
27秒前
大模型应助wjx采纳,获得10
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975339
求助须知:如何正确求助?哪些是违规求助? 3519670
关于积分的说明 11199199
捐赠科研通 3256002
什么是DOI,文献DOI怎么找? 1798043
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305