Attention-Guided Global-Local Adversarial Learning for Detail-Preserving Multi-Exposure Image Fusion

计算机科学 人工智能 失真(音乐) 鉴别器 特征(语言学) 过程(计算) GSM演进的增强数据速率 像素 计算机视觉 图像(数学) 编码(集合论) 图像融合 源代码 深度学习 模式识别(心理学) 操作系统 程序设计语言 探测器 带宽(计算) 集合(抽象数据类型) 哲学 语言学 电信 放大器 计算机网络
作者
Jinyuan Liu,Jingjie Shang,Risheng Liu,Xin Fan
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 5026-5040 被引量:98
标识
DOI:10.1109/tcsvt.2022.3144455
摘要

Deep learning networks have recently demonstrated yielded impressive progress for multi-exposure image fusion. However, how to restore realistic texture details while correcting color distortion is still a challenging problem to be solved. To alleviate the aforementioned issues, in this paper, we propose an attention-guided global-local adversarial learning network for fusing extreme exposure images in a coarse-to-fine manner. Firstly, the coarse fusion result is generated under the guidance of attention weight maps, which acquires the essential region of interest from both sides. Secondly, we formulate an edge loss function, along with a spatial feature transform layer, for refining the fusion process. So that it can take full use of the edge information to deal with blurry edges. Moreover, by incorporating global-local learning, our method can balance pixel intensity distribution and correct the color distortion on spatially varying source images from both image/patch perspectives. Such a global-local discriminator ensures all the local patches of the fused images align with realistic normal-exposure ones. Extensive experimental results on two publicly available datasets show that our method drastically outperforms state-of-the-art methods in visual inspection and objective analysis. Furthermore, sufficient ablation experiments prove that our method has significant advantages in generating high-quality fused results with appealing details, clear targets, and faithful color. Source code will be available at https://github.com/JinyuanLiu-CV/AGAL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瞅我这一脑门汗完成签到,获得积分10
刚刚
雨柏完成签到 ,获得积分10
2秒前
11发布了新的文献求助20
2秒前
3秒前
3秒前
4秒前
完美世界应助内向怀曼采纳,获得10
5秒前
猪猪hero应助wpf7848采纳,获得10
5秒前
chen_hebo发布了新的文献求助10
5秒前
MYMELODY完成签到,获得积分10
7秒前
devil完成签到,获得积分10
8秒前
汉堡包应助22222采纳,获得10
8秒前
mm发布了新的文献求助10
9秒前
dadadaxia发布了新的文献求助10
9秒前
10秒前
土豆丝完成签到 ,获得积分10
11秒前
seven完成签到,获得积分10
12秒前
12秒前
CA发布了新的文献求助10
13秒前
旺旺小小su完成签到,获得积分10
13秒前
哎呀我去完成签到,获得积分10
14秒前
16秒前
16秒前
wanghuifen123发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
18秒前
菜菜带带完成签到,获得积分10
19秒前
19秒前
ylbb发布了新的文献求助10
20秒前
21秒前
21秒前
PEAR发布了新的文献求助10
23秒前
23秒前
24秒前
赘婿应助跳跃傲安采纳,获得10
25秒前
25秒前
菜菜带带发布了新的文献求助10
26秒前
内向怀曼发布了新的文献求助10
27秒前
29秒前
wanghuifen123完成签到,获得积分20
29秒前
丘比特应助fzzf采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956119
求助须知:如何正确求助?哪些是违规求助? 3502336
关于积分的说明 11107217
捐赠科研通 3232912
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870422
科研通“疑难数据库(出版商)”最低求助积分说明 802019