超氧化物
化学
活性氧
荧光
线粒体
体内
生物物理学
生物化学
酶
生物
物理
生物技术
量子力学
作者
Ya‐Xi Ye,Jian-Cheng Pan,Xinyue Chen,Jiang Li,Qingcai Jiao,Hai‐Liang Zhu,Junzhong Liu,Zhong‐Chang Wang
出处
期刊:Analyst
[Royal Society of Chemistry]
日期:2022-01-01
卷期号:147 (15): 3534-3541
被引量:7
摘要
As a precursor of all reactive oxygen species (ROS), superoxide anions play an important role in organisms. However, excessive superoxide anions can cause various diseases. Thus, it is highly urgent to develop efficient tools for in situ superoxide anion detection. In this work, a novel boric acid-based, mitochondria-targeted fluorescent probe Mito-YX for superoxide anion detection was designed by regulating its intramolecular charge transfer (ICT) effect. The probe exhibited turn-on fluorescence enhancement within 4 min of reaction with the superoxide anion. In addition, Mito-YX also exhibited high selectivity and a low detection limit down to 0.24 μM with good mitochondrial targeting characteristics, which provided a necessary basis for in vivo detection of superoxide anions. What is more, Mito-YX was successfully applied for the in situ monitoring of superoxide anions in living MCF-7 cells, RAW 264.7 cells and a mouse model of lung inflammation stimulated by LPS. This work provided an important and promising tool for rapid in situ diagnosis and research of the progression of pneumonia.
科研通智能强力驱动
Strongly Powered by AbleSci AI