Quantitative analysis of textile delusterant based on terahertz spectral and data fusion strategies

太赫兹辐射 织物 融合 传感器融合 计算机科学 材料科学 遥感 光学 人工智能 物理 光电子学 地质学 复合材料 语言学 哲学
作者
Xiaoli Yin,Huicong Chen,An Liu,Wei Mo
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:125: 104293-104293 被引量:2
标识
DOI:10.1016/j.infrared.2022.104293
摘要

• Spectral data fusion and partial least squares were used to determine the delusterant content in textiles. • High-level data fusion was the most effective way to model the quantification of delusterant. • It lays the valuable foundation for the testing of textile additives. Titanium dioxide is a delusterant and an important component in the manufacturing of polyester fiber. For the need of fast, accurate and nondestructive detection of matting agents in textiles, a quantitative analysis method based on terahertz absorption spectroscopy and derivative spectroscopy, combined with chemometrics and data fusion strategy is proposed. This experiment was used two spectra for fusion. The terahertz absorption spectra were obtained in the band of 0.2–1.9 THz by optical parameter extraction. The derivative spectrum was derived from the first-order derivative of the absorption spectrum. Partial least squares (PLS) and data fusion were used to construct a prediction model for titanium dioxide concentration in polyester fiber. Low-level data fusion was the direct combination of two spectral data; The successive projections algorithm (SPA) and Monte Carlo uninformative variable elimination (MCUVE) were employed by mid-level data fusion for feature selection, after which the feature variables were fused; multiple linear regression was used for fusion by high-level data fusion. The prediction accuracy of the high-level data fusion model is higher than that of other models, which the correlation coefficient of cross-validation (Rcv) and correlation coefficient of prediction (Rp) are 0.9229 and 0.9227. The mean relative error (MRE) is 0.2654. The results show that terahertz spectroscopy combined with chemometric methods and high-level data fusion strategies can achieve rapid, accurate and non-destructive detection of titanium dioxide in polyester fiber, which can lay the theoretical foundation for terahertz spectroscopy detection methods for textile additives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小杰发布了新的文献求助10
1秒前
呆瓜完成签到,获得积分10
4秒前
自由莺完成签到 ,获得积分10
4秒前
7秒前
Scss完成签到,获得积分10
8秒前
易止完成签到 ,获得积分10
10秒前
gabee完成签到 ,获得积分10
10秒前
张哈完成签到 ,获得积分10
14秒前
kk应助sddq采纳,获得10
14秒前
123完成签到,获得积分10
14秒前
缥缈若翠完成签到,获得积分10
15秒前
17秒前
绿野仙踪完成签到,获得积分10
18秒前
木木完成签到,获得积分10
18秒前
Feng5945完成签到 ,获得积分10
18秒前
阿波罗完成签到 ,获得积分10
19秒前
包飞雪发布了新的文献求助10
20秒前
Mm完成签到,获得积分10
21秒前
夏虫完成签到,获得积分10
21秒前
勤奋尔丝完成签到 ,获得积分10
22秒前
czz014完成签到,获得积分10
25秒前
dream完成签到 ,获得积分10
30秒前
包飞雪完成签到,获得积分10
32秒前
chenjun7080完成签到,获得积分10
33秒前
十二应助科研通管家采纳,获得10
34秒前
天天快乐应助科研通管家采纳,获得10
34秒前
完美世界应助科研通管家采纳,获得10
34秒前
怡然猎豹完成签到,获得积分10
42秒前
牛奶拌可乐完成签到 ,获得积分10
42秒前
欢喜的早晨完成签到,获得积分10
51秒前
禾页完成签到 ,获得积分10
54秒前
yyy关闭了yyy文献求助
59秒前
mendicant完成签到,获得积分10
1分钟前
帅哥吴克完成签到,获得积分10
1分钟前
耍酷依玉完成签到,获得积分10
1分钟前
Wilbert完成签到 ,获得积分10
1分钟前
1分钟前
邪恶青年完成签到,获得积分10
1分钟前
田田完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965780
求助须知:如何正确求助?哪些是违规求助? 3511022
关于积分的说明 11156025
捐赠科研通 3245496
什么是DOI,文献DOI怎么找? 1793089
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804255