Whole transcriptome analysis reveals non-coding RNA's competing endogenous gene pairs as novel form of motifs in serous ovarian cancer

竞争性内源性RNA 生物 小RNA 计算生物学 基因表达 非编码RNA 基因 转录组 卵巢癌 核糖核酸 内生 Piwi相互作用RNA 长非编码RNA 微阵列分析技术 微阵列 基因表达谱 遗传学 RNA干扰 癌症 内分泌学
作者
Haili Li,Xubin Zheng,Jing Gao,Kwong‐Sak Leung,Man‐Hon Wong,Shu Yang,Yakun Liu,Ming Dong,Huimin Bai,Xiufeng Ye,Lixin Cheng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:148: 105881-105881 被引量:14
标识
DOI:10.1016/j.compbiomed.2022.105881
摘要

The non-coding RNA (ncRNA) regulation appears to be associated to the diagnosis and targeted therapy of complex diseases. Motifs of non-coding RNAs and genes in the competing endogenous RNA (ceRNA) network would probably contribute to the accurate prediction of serous ovarian carcinoma (SOC). We conducted a microarray study profiling the whole transcriptomes of eight human SOCs and eight controls and constructed a ceRNA network including mRNAs, long ncRNAs, and circular RNAs (circRNAs). Novel form of motifs (mRNA-ncRNA-mRNA) were identified from the ceRNA network and defined as non-coding RNA's competing endogenous gene pairs (ceGPs), using a proposed method denoised individualized pair analysis of gene expression (deiPAGE). 18 cricRNA's ceGPs (cceGPs) were identified from multiple cohorts and were fused as an indicator (SOC index) for SOC discrimination, which carried a high predictive capacity in independent cohorts. SOC index was negatively correlated with the CD8+/CD4+ ratio in tumour-infiltration, reflecting the migration and growth of tumour cells in ovarian cancer progression. Moreover, most of the RNAs in SOC index were experimentally validated involved in ovarian cancer development. Our results elucidate the discriminative capability of SOC index and suggest that the novel competing endogenous motifs play important roles in expression regulation and could be potential target for investigating ovarian cancer mechanism or its therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哎哟可爱发布了新的文献求助20
刚刚
1秒前
不期而遇发布了新的文献求助10
1秒前
1秒前
2秒前
Yuanyuan发布了新的文献求助10
4秒前
所所应助小周长大开飞船采纳,获得10
4秒前
优美紫槐发布了新的文献求助10
4秒前
5秒前
6秒前
willow完成签到 ,获得积分10
6秒前
6秒前
爱你不商量完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
13秒前
13秒前
14秒前
slayer发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
陈雨露发布了新的文献求助10
15秒前
15秒前
Xuan发布了新的文献求助10
15秒前
NexusExplorer应助震动的友琴采纳,获得10
16秒前
16秒前
shmily13333完成签到 ,获得积分10
16秒前
mkb发布了新的文献求助10
17秒前
小蘑菇应助沉静炳采纳,获得10
17秒前
优美紫槐发布了新的文献求助10
17秒前
x1发布了新的文献求助20
18秒前
19秒前
KanmenRider发布了新的文献求助10
21秒前
22秒前
Jun发布了新的文献求助10
23秒前
23秒前
香蕉觅云应助小y采纳,获得10
26秒前
蒋羊羊完成签到 ,获得积分20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729178
求助须知:如何正确求助?哪些是违规求助? 5316755
关于积分的说明 15316050
捐赠科研通 4876196
什么是DOI,文献DOI怎么找? 2619280
邀请新用户注册赠送积分活动 1568848
关于科研通互助平台的介绍 1525338