清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A deep learning method for predicting metabolite–disease associations via graph neural network

代谢物 计算机科学 卷积神经网络 图形 人工智能 机器学习 深度学习 模式识别(心理学) 理论计算机科学 生物 生物化学
作者
Feiyue Sun,Jianqiang Sun,Qi Zhao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:150
标识
DOI:10.1093/bib/bbac266
摘要

Abstract Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life, body growth and reproduction. More and more researchers have shown that the concentrations of some metabolites in patients are different from those in healthy people. Traditional biological experiments can test some hypotheses and verify their relationships but usually take a considerable amount of time and money. Therefore, it is urgent to develop a new computational method to identify the relationships between metabolites and diseases. In this work, we present a new deep learning algorithm named as graph convolutional network with graph attention network (GCNAT) to predict the potential associations of disease-related metabolites. First, we construct a heterogeneous network based on known metabolite–disease associations, metabolite–metabolite similarities and disease–disease similarities. Metabolite and disease features are encoded and learned through the graph convolutional neural network. Then, a graph attention layer is used to combine the embeddings of multiple convolutional layers, and the corresponding attention coefficients are calculated to assign different weights to the embeddings of each layer. Further, the prediction result is obtained by decoding and scoring the final synthetic embeddings. Finally, GCNAT achieves a reliable area under the receiver operating characteristic curve of 0.95 and the precision-recall curve of 0.405, which are better than the results of existing five state-of-the-art predictive methods in 5-fold cross-validation, and the case studies show that the metabolite–disease correlations predicted by our method can be successfully demonstrated by relevant experiments. We hope that GCNAT could be a useful biomedical research tool for predicting potential metabolite–disease associations in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
22秒前
科研通AI2S应助小手姑娘采纳,获得10
29秒前
Polymer72应助科研通管家采纳,获得10
31秒前
Polymer72应助科研通管家采纳,获得10
31秒前
32秒前
今后应助dfuggh采纳,获得10
43秒前
不安的松完成签到 ,获得积分10
48秒前
winne完成签到,获得积分10
53秒前
1分钟前
1分钟前
John完成签到,获得积分10
1分钟前
1分钟前
dfuggh发布了新的文献求助10
1分钟前
1分钟前
zhy完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Polymer72应助科研通管家采纳,获得20
2分钟前
2分钟前
3分钟前
3分钟前
mf2002mf完成签到 ,获得积分10
3分钟前
vitamin完成签到 ,获得积分10
3分钟前
4分钟前
白华苍松完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
天天快乐应助科研通管家采纳,获得30
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
酷波er应助rubyss0520采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397920
求助须知:如何正确求助?哪些是违规求助? 3006928
关于积分的说明 8823526
捐赠科研通 2694272
什么是DOI,文献DOI怎么找? 1475776
科研通“疑难数据库(出版商)”最低求助积分说明 682508
邀请新用户注册赠送积分活动 675950