Scalable and Accurate Test Case Prioritization in Continuous Integration Contexts

计算机科学 回归检验 可扩展性 数据挖掘 优先次序 集合(抽象数据类型) 测试用例 机器学习 软件 回归分析 回归 人工智能 软件系统 数据库 软件建设 管理科学 经济 程序设计语言 心理学 精神分析
作者
Ahmadreza Saboor Yaraghi,Mojtaba Bagherzadeh,Nafıseh Kahani,Lionel Briand
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:49 (4): 1615-1639 被引量:33
标识
DOI:10.1109/tse.2022.3184842
摘要

Continuous Integration (CI) requires efficient regression testing to ensure software quality without significantly delaying its CI builds. This warrants the need for techniques to reduce regression testing time, such as Test Case Prioritization (TCP) techniques that prioritize the execution of test cases to detect faults as early as possible. Many recent TCP studies employ various Machine Learning (ML) techniques to deal with the dynamic and complex nature of CI. However, most of them use a limited number of features for training ML models and evaluate the models on subjects for which the application of TCP makes little practical sense, due to their small regression testing time and low number of failed builds. In this work, we first define, at a conceptual level, a data model that captures data sources and their relations in a typical CI environment. Second, based on this data model, we define a comprehensive set of features that covers all features previously used by related studies. Third, we develop methods and tools to collect the defined features for 25 open-source software systems with enough failed builds and whose regression testing takes at least five minutes. Fourth, relying on the collected dataset containing a comprehensive feature set, we answer four research questions concerning data collection time, the effectiveness of ML-based TCP, the impact of the features on effectiveness, the decay of ML-based TCP models over time, and the trade-off between data collection time and the effectiveness of ML-based TCP techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单喀秋莎完成签到,获得积分10
2秒前
2秒前
CodeCraft应助菠萝披萨采纳,获得10
2秒前
风趣绿竹完成签到,获得积分10
3秒前
傲娇的秋莲完成签到,获得积分20
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
小明发布了新的文献求助10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
天天快乐应助科研通管家采纳,获得30
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
无花果应助einspringen采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
yu发布了新的文献求助30
4秒前
4秒前
5秒前
Levan完成签到,获得积分10
5秒前
bamboo应助科研通管家采纳,获得20
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
求助人员应助科研通管家采纳,获得30
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
蜉蝣完成签到,获得积分10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
大力帽子应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
能干巨人应助科研通管家采纳,获得10
6秒前
HJJHJH发布了新的文献求助10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
轨迹应助科研通管家采纳,获得30
6秒前
小鱼鱼Fish应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667