Scalable and Accurate Test Case Prioritization in Continuous Integration Contexts

计算机科学 回归检验 可扩展性 数据挖掘 优先次序 集合(抽象数据类型) 测试用例 机器学习 软件 回归分析 回归 人工智能 软件系统 数据库 软件建设 管理科学 经济 程序设计语言 心理学 精神分析
作者
Ahmadreza Saboor Yaraghi,Mojtaba Bagherzadeh,Nafıseh Kahani,Lionel Briand
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:49 (4): 1615-1639 被引量:33
标识
DOI:10.1109/tse.2022.3184842
摘要

Continuous Integration (CI) requires efficient regression testing to ensure software quality without significantly delaying its CI builds. This warrants the need for techniques to reduce regression testing time, such as Test Case Prioritization (TCP) techniques that prioritize the execution of test cases to detect faults as early as possible. Many recent TCP studies employ various Machine Learning (ML) techniques to deal with the dynamic and complex nature of CI. However, most of them use a limited number of features for training ML models and evaluate the models on subjects for which the application of TCP makes little practical sense, due to their small regression testing time and low number of failed builds. In this work, we first define, at a conceptual level, a data model that captures data sources and their relations in a typical CI environment. Second, based on this data model, we define a comprehensive set of features that covers all features previously used by related studies. Third, we develop methods and tools to collect the defined features for 25 open-source software systems with enough failed builds and whose regression testing takes at least five minutes. Fourth, relying on the collected dataset containing a comprehensive feature set, we answer four research questions concerning data collection time, the effectiveness of ML-based TCP, the impact of the features on effectiveness, the decay of ML-based TCP models over time, and the trade-off between data collection time and the effectiveness of ML-based TCP techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
somnus完成签到,获得积分10
2秒前
April_ff应助外向的从波采纳,获得10
2秒前
2秒前
Yi关注了科研通微信公众号
3秒前
4秒前
5秒前
打打应助王悦靓采纳,获得10
5秒前
friendship_x发布了新的文献求助10
6秒前
北一发布了新的文献求助10
6秒前
小鱼干不爱看书完成签到,获得积分10
6秒前
梅天豪完成签到,获得积分20
6秒前
cowmoon完成签到 ,获得积分10
7秒前
林瑶发布了新的文献求助10
8秒前
林俊超完成签到,获得积分10
9秒前
wanci应助外向的绿蓉采纳,获得10
9秒前
jajaqy完成签到,获得积分10
9秒前
王卫完成签到,获得积分10
12秒前
xuli21315完成签到 ,获得积分10
12秒前
13秒前
温柔的婷完成签到,获得积分10
14秒前
14秒前
DDD完成签到 ,获得积分10
14秒前
16秒前
孟雯毓发布了新的文献求助10
17秒前
zhugao完成签到,获得积分10
17秒前
17秒前
可爱的函函应助saafczvvn采纳,获得10
19秒前
lxy发布了新的文献求助10
19秒前
老干部发布了新的文献求助10
20秒前
撒啊完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
22秒前
wanci应助Ressia0727采纳,获得10
23秒前
123发布了新的文献求助10
25秒前
小白发布了新的文献求助10
28秒前
袁科研完成签到,获得积分10
29秒前
29秒前
完美世界应助Rui_Rui采纳,获得10
29秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339366
求助须知:如何正确求助?哪些是违规求助? 4476236
关于积分的说明 13930768
捐赠科研通 4371637
什么是DOI,文献DOI怎么找? 2402047
邀请新用户注册赠送积分活动 1394975
关于科研通互助平台的介绍 1366898