计算机科学
突出
背景(考古学)
特征(语言学)
人工智能
目标检测
计算机视觉
编码器
模式识别(心理学)
地质学
古生物学
语言学
哲学
操作系统
作者
Qi Wang,Yanfeng Liu,Zhitong Xiong,Yuan Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:60: 1-15
被引量:52
标识
DOI:10.1109/tgrs.2022.3181062
摘要
Recently, salient object detection in optical remote sensing images (RSI-SOD) has attracted great attention. Benefiting from the success of deep learning and the inspiration of natural SOD task, RSI-SOD has achieved fast progress over the past two years. However, existing methods usually suffer from the intrinsic problems of optical RSIs, 1) cluttered background; 2) scale variation of salient objects; 3) complicated edges and irregular topology. To remedy these problems, we propose a hybrid feature aligned network (HFANet) jointly modeling boundary learning to detect salient objects effectively. Specifically, we design a hybrid encoder by unifying two components to capture global context for mitigating the disturbance of complex background. Then, to detect multiscale salient objects effectively, we propose a Gated Fold-ASPP (GF-ASPP) to extract abundant context in the deep semantic features. Furthermore, an adjacent feature aligned module (AFAM) is presented for integrating adjacent features with unparameterized alignment strategy. Finally, we propose a novel interactive guidance loss (IGLoss) to combine saliency and edge detection, which can adaptively perform mutual supervision of the two sub-tasks to facilitate detection of salient objects with blurred edges and irregular topology. Adequate experimental results on three optical RSI-SOD datasets reveal that the presented approach exceeds 18 state-of-the-art ones. All codes and detection results are available at https://github.com/lyf0801/HFANet.
科研通智能强力驱动
Strongly Powered by AbleSci AI