Deep learning solution for medical image localization and orientation detection

计算机科学 人工智能 地标 方向(向量空间) 工作流程 分割 计算机视觉 集合(抽象数据类型) 自动化 任务(项目管理) 模式识别(心理学) 数学 管理 经济 机械工程 几何学 数据库 工程类 程序设计语言
作者
Yu Zhao,Ke Zeng,Yiyuan Zhao,Parmeet Bhatia,Mahesh Ranganath,Muhammed Labeeb Kozhikkavil,Chen Li,Gerardo Hermosillo
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:81: 102529-102529 被引量:6
标识
DOI:10.1016/j.media.2022.102529
摘要

Magnetic Resonance (MR) imaging plays an important role in medical diagnosis and biomedical research. Due to the high in-slice resolution and low through-slice resolution nature of MR imaging, the usefulness of the reconstruction highly depends on the positioning of the slice group. Traditional clinical workflow relies on time-consuming manual adjustment that cannot be easily reproduced. Automation of this task can therefore bring important benefits in terms of accuracy, speed and reproducibility. Current auto-slice-positioning methods rely on automatically detected landmarks to derive the positioning, and previous studies suggest that a large, redundant set of landmarks are required to achieve robust results. However, a costly data curation procedure is needed to generate training labels for those landmarks, and the results can still be highly sensitive to landmark detection errors. More importantly, a set of anatomical landmark locations are not naturally produced during the standard clinical workflow, which makes online learning impossible. To address these limitations, we propose a novel framework for auto-slice-positioning that focuses on localizing the canonical planes within a 3D volume. The proposed framework consists of two major steps. A multi-resolution region proposal network is first used to extract a volume-of-interest, after which a V-net-like segmentation network is applied to segment the orientation planes. Importantly, our algorithm also includes a Performance Measurement Index as an indication of the algorithm’s confidence. We evaluate the proposed framework on both knee and shoulder MR scans. Our method outperforms state-of-the-art automatic positioning algorithms in terms of accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无敌鱼完成签到,获得积分10
刚刚
ffu完成签到 ,获得积分10
刚刚
天天快乐应助好的采纳,获得10
刚刚
刚刚
香蕉觅云应助科研小白花采纳,获得10
刚刚
18746005898发布了新的文献求助10
1秒前
科研通AI5应助fanfan44390采纳,获得10
1秒前
1秒前
1秒前
小刺猬完成签到,获得积分10
1秒前
小庄发布了新的文献求助10
1秒前
唐人雄发布了新的文献求助10
2秒前
英姑应助Khr1stINK采纳,获得10
2秒前
爆米花应助甜筒采纳,获得10
2秒前
Gang完成签到,获得积分10
2秒前
调研昵称发布了新的文献求助10
3秒前
Hello应助潇洒的青采纳,获得10
3秒前
3秒前
共享精神应助长孙归尘采纳,获得10
3秒前
4秒前
Evan123发布了新的文献求助10
4秒前
5秒前
xctdyl1992发布了新的文献求助10
5秒前
5秒前
Su完成签到,获得积分10
5秒前
俗丨完成签到,获得积分10
6秒前
科研通AI5应助海底落日采纳,获得30
6秒前
6秒前
CodeCraft应助纯真忆安采纳,获得10
6秒前
顺顺发布了新的文献求助10
6秒前
6秒前
7秒前
nan完成签到,获得积分10
7秒前
7秒前
自信的叫兽完成签到,获得积分10
7秒前
淡然老太完成签到,获得积分10
8秒前
8秒前
哟哟哟完成签到,获得积分10
9秒前
思源应助背后的机器猫采纳,获得10
9秒前
惠惠发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794