亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A space search optimization algorithm with accelerated convergence strategies

波束堆栈搜索 引导式本地搜索 数学优化 局部搜索(优化) 差异进化 进化算法 迭代深化深度优先搜索 计算机科学 最佳优先搜索 早熟收敛 波束搜索 局部最优 搜索算法 水准点(测量) 算法 趋同(经济学) 数学 遗传算法 经济增长 经济 大地测量学 地理
作者
Wei Huang,Sung‐Kwun Oh,Zhaolu Guo,Witold Pedrycz
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:13 (12): 4659-4675 被引量:17
标识
DOI:10.1016/j.asoc.2013.06.005
摘要

Evolutionary algorithms (EAs), which have been widely used to solve various scientific and engineering optimization problems, are essentially stochastic search algorithms operating in the overall solution space. However, such random search mechanism may lead to some disadvantages such as a long computing time and premature convergence. In this study, we propose a space search optimization algorithm (SSOA) with accelerated convergence strategies to alleviate the drawbacks of the purely random search mechanism. The overall framework of the SSOA involves three main search mechanisms: local space search, global space search, and opposition-based search. The local space search that aims to form new solutions approaching the local optimum is realized based on the concept of augmented simplex method, which exhibits significant search abilities realized in some local space. The global space search is completed by Cauchy searching, where the approach itself is based on the Cauchy mutation. This operation can help the method avoid of being trapped in local optima and in this way alleviate premature convergence. An opposition-based search is exploited to accelerate the convergence of space search. This operator can effectively reduce a substantial computational overhead encountered in evolutionary algorithms (EAs). With the use of them SSOA realizes an effective search process. To evaluate the performance of the method, the proposed SSOA is contrasted with a method of differential evolution (DE), which is a well-known space concept-based evolutionary algorithm. When tested against benchmark functions, the SSOA exhibits a competitive performance vis-a-vis performance of some other competitive schemes of differential evolution in terms of accuracy and speed of convergence, especially in case of high-dimensional continuous optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小龙完成签到,获得积分10
3秒前
斯文败类应助科研猫头鹰采纳,获得10
5秒前
小智发布了新的文献求助10
6秒前
nxy完成签到 ,获得积分10
10秒前
Owen应助EaRnn采纳,获得10
11秒前
玫瑰遇上奶油完成签到 ,获得积分10
23秒前
赵雨欣完成签到,获得积分10
25秒前
34秒前
35秒前
小巧尔曼完成签到,获得积分10
35秒前
35秒前
EaRnn发布了新的文献求助10
39秒前
chenzheng发布了新的文献求助10
41秒前
可爱的函函应助Karma采纳,获得10
48秒前
ceeray23应助科研通管家采纳,获得10
55秒前
田様应助科研通管家采纳,获得10
55秒前
ceeray23应助科研通管家采纳,获得10
55秒前
58秒前
William_l_c完成签到,获得积分10
1分钟前
CipherSage应助Karma采纳,获得10
1分钟前
KaK完成签到,获得积分20
1分钟前
小二郎应助美满惜寒采纳,获得10
1分钟前
1分钟前
sunny发布了新的文献求助10
1分钟前
edtaa完成签到 ,获得积分10
1分钟前
飘逸的雁露完成签到,获得积分10
1分钟前
1分钟前
美满惜寒发布了新的文献求助10
1分钟前
汉堡包应助契合采纳,获得10
1分钟前
CATH完成签到 ,获得积分10
1分钟前
momo完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
blenx完成签到,获得积分10
1分钟前
1分钟前
Karma发布了新的文献求助10
2分钟前
Fishchips发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413046
求助须知:如何正确求助?哪些是违规求助? 4530302
关于积分的说明 14122781
捐赠科研通 4445187
什么是DOI,文献DOI怎么找? 2439119
邀请新用户注册赠送积分活动 1431201
关于科研通互助平台的介绍 1408570