A space search optimization algorithm with accelerated convergence strategies

波束堆栈搜索 引导式本地搜索 数学优化 局部搜索(优化) 差异进化 进化算法 迭代深化深度优先搜索 计算机科学 最佳优先搜索 早熟收敛 波束搜索 局部最优 搜索算法 水准点(测量) 算法 趋同(经济学) 数学 遗传算法 经济增长 经济 大地测量学 地理
作者
Wei Huang,Sung‐Kwun Oh,Zhaolu Guo,Witold Pedrycz
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:13 (12): 4659-4675 被引量:17
标识
DOI:10.1016/j.asoc.2013.06.005
摘要

Evolutionary algorithms (EAs), which have been widely used to solve various scientific and engineering optimization problems, are essentially stochastic search algorithms operating in the overall solution space. However, such random search mechanism may lead to some disadvantages such as a long computing time and premature convergence. In this study, we propose a space search optimization algorithm (SSOA) with accelerated convergence strategies to alleviate the drawbacks of the purely random search mechanism. The overall framework of the SSOA involves three main search mechanisms: local space search, global space search, and opposition-based search. The local space search that aims to form new solutions approaching the local optimum is realized based on the concept of augmented simplex method, which exhibits significant search abilities realized in some local space. The global space search is completed by Cauchy searching, where the approach itself is based on the Cauchy mutation. This operation can help the method avoid of being trapped in local optima and in this way alleviate premature convergence. An opposition-based search is exploited to accelerate the convergence of space search. This operator can effectively reduce a substantial computational overhead encountered in evolutionary algorithms (EAs). With the use of them SSOA realizes an effective search process. To evaluate the performance of the method, the proposed SSOA is contrasted with a method of differential evolution (DE), which is a well-known space concept-based evolutionary algorithm. When tested against benchmark functions, the SSOA exhibits a competitive performance vis-a-vis performance of some other competitive schemes of differential evolution in terms of accuracy and speed of convergence, especially in case of high-dimensional continuous optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪血糕yu完成签到,获得积分10
刚刚
han完成签到,获得积分10
刚刚
补药学习完成签到,获得积分10
1秒前
精明的寒天完成签到,获得积分10
2秒前
SYLH应助YQP采纳,获得10
2秒前
ss完成签到,获得积分10
2秒前
怕黑的静蕾应助Xiaoyu采纳,获得10
3秒前
xxx完成签到,获得积分10
3秒前
3秒前
Akim应助wangmeiqiong采纳,获得30
4秒前
NingnnnZhang完成签到,获得积分10
4秒前
mmyhn发布了新的文献求助20
4秒前
5秒前
领导范儿应助朱滨松采纳,获得20
6秒前
6秒前
科研鸟发布了新的文献求助10
7秒前
w王w发布了新的文献求助10
7秒前
8秒前
tll完成签到,获得积分10
9秒前
天天快乐应助苗条的老九采纳,获得10
9秒前
10秒前
11秒前
CodeCraft应助俊逸的香萱采纳,获得10
12秒前
所所应助火星上的澜采纳,获得10
12秒前
13秒前
13秒前
13秒前
15秒前
TJY发布了新的文献求助10
15秒前
善学以致用应助SUN采纳,获得10
15秒前
15秒前
15秒前
英俊水池发布了新的文献求助10
16秒前
科研通AI5应助qq采纳,获得10
16秒前
w王w完成签到,获得积分10
16秒前
火火关注了科研通微信公众号
16秒前
deng发布了新的文献求助10
17秒前
18秒前
梦回与她发布了新的文献求助30
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420