A space search optimization algorithm with accelerated convergence strategies

波束堆栈搜索 引导式本地搜索 数学优化 局部搜索(优化) 差异进化 进化算法 迭代深化深度优先搜索 计算机科学 最佳优先搜索 早熟收敛 波束搜索 局部最优 搜索算法 水准点(测量) 算法 趋同(经济学) 数学 遗传算法 经济增长 经济 大地测量学 地理
作者
Wei Huang,Sung‐Kwun Oh,Zhaolu Guo,Witold Pedrycz
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:13 (12): 4659-4675 被引量:17
标识
DOI:10.1016/j.asoc.2013.06.005
摘要

Evolutionary algorithms (EAs), which have been widely used to solve various scientific and engineering optimization problems, are essentially stochastic search algorithms operating in the overall solution space. However, such random search mechanism may lead to some disadvantages such as a long computing time and premature convergence. In this study, we propose a space search optimization algorithm (SSOA) with accelerated convergence strategies to alleviate the drawbacks of the purely random search mechanism. The overall framework of the SSOA involves three main search mechanisms: local space search, global space search, and opposition-based search. The local space search that aims to form new solutions approaching the local optimum is realized based on the concept of augmented simplex method, which exhibits significant search abilities realized in some local space. The global space search is completed by Cauchy searching, where the approach itself is based on the Cauchy mutation. This operation can help the method avoid of being trapped in local optima and in this way alleviate premature convergence. An opposition-based search is exploited to accelerate the convergence of space search. This operator can effectively reduce a substantial computational overhead encountered in evolutionary algorithms (EAs). With the use of them SSOA realizes an effective search process. To evaluate the performance of the method, the proposed SSOA is contrasted with a method of differential evolution (DE), which is a well-known space concept-based evolutionary algorithm. When tested against benchmark functions, the SSOA exhibits a competitive performance vis-a-vis performance of some other competitive schemes of differential evolution in terms of accuracy and speed of convergence, especially in case of high-dimensional continuous optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助随波逐流采纳,获得10
刚刚
sissi应助luckygirl采纳,获得10
刚刚
6秒前
6秒前
cwm完成签到,获得积分10
9秒前
xinghe完成签到,获得积分10
10秒前
善学以致用应助MUAL采纳,获得10
10秒前
miselling发布了新的文献求助10
11秒前
12秒前
xinghe发布了新的文献求助10
13秒前
13秒前
光亮小笼包完成签到 ,获得积分10
13秒前
子车破茧发布了新的文献求助10
14秒前
陈功完成签到,获得积分10
15秒前
离异带娃完成签到 ,获得积分10
17秒前
执着发布了新的文献求助10
18秒前
带象发布了新的文献求助10
18秒前
心已死何来心完成签到,获得积分10
19秒前
19秒前
Tttttttt完成签到,获得积分10
21秒前
hang完成签到,获得积分10
21秒前
你要学好完成签到 ,获得积分10
22秒前
22秒前
清风完成签到,获得积分10
22秒前
23秒前
xiaotaiyang发布了新的文献求助10
24秒前
小蘑菇应助huihui采纳,获得10
24秒前
子健完成签到,获得积分10
24秒前
西瓜霜完成签到 ,获得积分10
24秒前
ElbingX发布了新的文献求助30
25秒前
摆烂小土豆完成签到 ,获得积分10
25秒前
SciGPT应助xinghe采纳,获得10
25秒前
范先生发布了新的文献求助10
27秒前
MUAL发布了新的文献求助10
28秒前
29秒前
Agnesma完成签到,获得积分10
29秒前
共享精神应助xiaotaiyang采纳,获得10
31秒前
肉胖胖肉完成签到,获得积分10
32秒前
酷波er应助shifeng_zai采纳,获得10
33秒前
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175