阿普雷诺醇
平多洛
普拉托洛尔
体内
内分泌学
化学
内科学
受体
兴奋剂
药理学
肾上腺素能受体
阿替洛尔
普萘洛尔
生物
医学
生物技术
血压
作者
Paul Conway,Shanaz M. Tejani‐Butt,David J. Brunswick
出处
期刊:PubMed
日期:1987-06-01
卷期号:241 (3): 755-62
被引量:50
摘要
There is interest in knowing whether beta adrenergic antagonists or agonists, when administered systemically, can enter the brain to interact with central beta adrenergic receptors. To study this, the reduction in the radioactive content in the brain of rats after administration of (-)-[125I]iodopindolol (IPIN) by systemically administered beta agonists or antagonists was measured. Previous studies show that after the i.v. administration of IPIN the binding in vivo to various areas of the central nervous system has the characteristics expected of binding to beta adrenergic receptors. Of the antagonists tested, pindolol and butylpindolol showed potent interactions with beta receptors in both cortex and cerebellum whereas atenolol and practolol did not interact at doses up to 30 mg/kg. CGP-12177 showed moderate potency in inhibiting IPIN binding in vivo. We have shown previously that propranolol and alprenolol inhibit IPIN binding with high potency in cortex and cerebellum. At high doses, butoxamine, a beta-2 antagonist, reduced the binding of IPIN in the cerebellum but not in the cortex. Of the agonists tested, clenbuterol and prenalterol caused a significant dose-dependent reduction of the binding of IPIN, with clenbuterol being more potent. Isoproterenol, salbutamol, salmefamol and dobutamine had no effect. With the exception of CGP-12177, the affinity of the drugs for central beta adrenergic receptors measured in vitro was correlated significantly with their ability to inhibit IPIN binding in vivo whereas their degree of lipophilicity was not correlated significantly with potency in vivo. The inhibition of IPIN binding in vivo from brain areas can be used to evaluate whether drugs penetrate into brain and interact with central beta adrenergic receptors.
科研通智能强力驱动
Strongly Powered by AbleSci AI