内斯汀
生物
细胞生物学
细胞分化
烯醇化酶
神经干细胞
细胞培养
神经突
神经丝
层粘连蛋白
干细胞
分子生物学
体外
免疫学
生物化学
细胞外基质
免疫组织化学
基因
遗传学
作者
Florian Völlner,Wolfgang Ernst,Oliver Driemel,Christian Morsczeck
标识
DOI:10.1016/j.diff.2009.03.002
摘要
Human dental follicle cells (DFCs) derived from wisdom teeth are precursor cells for cementoblasts. In this study, we recognized that naïve DFCs express constitutively the early neural cell marker beta-III-tubulin. Interestingly, DFCs formed beta-III-tubulin-positive neurosphere-like cell clusters (NLCCs) on low-attachment cell culture dishes in serum-replacement medium (SRM). For a detailed examination of the neural differentiation potential, DFCs were cultivated in different compositions of SRM containing supplements such as N2, B27, G5 and the neural stem cell supplement. Moreover, these cell culture media were combined with different cell culture substrates such as gelatin, laminin, poly-L-ornithine or poly-L-lysine. After cultivation in SRM, DFCs differentiated into cells with small cell bodies and long cellular extrusions. The expression of nestin, beta-III-tubulin, neuron-specific enolase (NSE) and neurofilament was up-regulated in SRM supplemented with G5, a cell culture supplement for glial cells, and the neural stem cell supplement. DFCs formed NLCCs and demonstrated an increased gene expression of neural cell markers beta-III-tubulin, NSE, nestin and for small neuron markers such as neuropeptides galanin (GAL) and tachykinin (TAC1) after cultivation on poly-L-lysine. For a further neural differentiation NLCC-derived cells were sub-cultivated on laminin and poly-L-ornithine cell culture substrate. After 2 weeks of differentiation, DFCs exposed neural-like cell morphology with small neurite-like cell extrusions. These cells differentially express neurofilament and NSE, but only low levels of beta-III-tubulin and nestin. In conclusion, we demonstrated the differentiation of human DFCs into neuron-like cells after a two-step strategy for neuronal differentiation.
科研通智能强力驱动
Strongly Powered by AbleSci AI