SEM-contour-based OPC model calibration through the process window

进程窗口 光学接近校正 计算机科学 稳健性(进化) 校准 光学(聚焦) 过程(计算) 实时计算 算法 光学 基因 化学 物理 操作系统 统计 生物化学 数学
作者
Jim Vasek,Ovadya Menedeva,Dan Levitzky,Ofer Lindman,Youval Nemadi,George E. Bailey,John L. Sturtevant
出处
期刊:Proceedings of SPIE 被引量:11
标识
DOI:10.1117/12.712232
摘要

As design rules shrink, there is an unavoidable increase in the complexity of OPC/RET schemes required to enable design printability. These complex OPC/RET schemes have been facilitating unprecedented yield at k1 factors previously deemed "unmanufacturable", but they increase the mask complexity and production cost, and can introduce yield-detracting errors. The most common errors are found in OPC design itself, and in the resulting patterning robustness across the process window. Two factors in the OPC design process that contribute to these errors are a) that 2D structures used in the design are not sufficiently well-represented in the OPC model calibration test pattern suite, and b) that the OPC model calibration is done only at the nominal process settings and not across the entire focus-exposure window. This work compares two alternative methods for calibrating OPC models. The first method uses a traditional industry flow for making CD measurements on standard calibration target structures. The second method uses 2D contour profiles extracted automatically by the CD-SEM over varying focus and exposure conditions. OPC models were developed for aggressive quadrupole illumination conditions (k1=0.35) used in 65nm- and 45nm-node logic gate patterning. Model accuracy improvement using 2D contours for calibration through the process window is demonstrated. Additionally this work addresses the issues of automating the contour extraction and calibration process, reducing the data collection burden with improved calibration cycle time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜的人龙完成签到 ,获得积分10
3秒前
CipherSage应助iu采纳,获得10
3秒前
kevindeng完成签到,获得积分20
4秒前
kyhappy_2002发布了新的文献求助10
5秒前
科研通AI5应助xiaowan采纳,获得10
5秒前
大模型应助青辞采纳,获得10
5秒前
何宁发布了新的文献求助10
5秒前
慧海拾穗发布了新的文献求助10
5秒前
HSA完成签到,获得积分10
6秒前
7秒前
7秒前
9秒前
zhikaiyici完成签到,获得积分10
11秒前
uniquelin完成签到,获得积分10
12秒前
科目三应助xxx采纳,获得10
13秒前
甘草三七完成签到,获得积分10
13秒前
13秒前
adai007发布了新的文献求助10
13秒前
郁乾完成签到,获得积分10
14秒前
15秒前
李健的粉丝团团长应助Gu采纳,获得10
16秒前
17秒前
在水一方应助帐个采纳,获得10
18秒前
20秒前
RBE小陈完成签到 ,获得积分10
21秒前
木野狐完成签到,获得积分10
23秒前
24秒前
丘比特应助zzzz采纳,获得10
24秒前
24秒前
25秒前
慕青应助木木木采纳,获得10
25秒前
26秒前
一研一个不吱声完成签到,获得积分10
27秒前
29秒前
ATOM发布了新的文献求助10
31秒前
搜集达人应助菜菜采纳,获得10
31秒前
32秒前
帐个发布了新的文献求助10
32秒前
32秒前
敏尔完成签到,获得积分10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734540
求助须知:如何正确求助?哪些是违规求助? 3278476
关于积分的说明 10009741
捐赠科研通 2995084
什么是DOI,文献DOI怎么找? 1643196
邀请新用户注册赠送积分活动 780989
科研通“疑难数据库(出版商)”最低求助积分说明 749196