神经嵴
肠神经系统
生物
索克斯10
巨结肠病
细胞生物学
互补
表型
神经管
遗传学
基因
内科学
神经科学
胚胎
疾病
医学
作者
Adam S. Wallace,M. X. Tan,Melitta Schachner,Richard B. Anderson
标识
DOI:10.1111/j.1365-2982.2011.01692.x
摘要
Background The enteric nervous system originates from neural crest cells that migrate into the embryonic foregut and then sequentially colonize the midgut and hindgut. Defects in neural crest migration result in regions of the gut that lack enteric ganglia, a condition in humans called Hirschsprung's disease. The high degree of phenotypic variability reported in Hirschsprung's disease suggests the involvement of modifier genes. Methods We used a two-locus complementation approach to screen for genetic interactions between L1cam and members of the endothelin signalling pathway. Immunohistochemistry was used to label PGP9.5+ enteric neurons and Sox10+ neural crest-derived cells in wholemount preparations of embryonic gut. Key Results Loss or haploinsufficiency of L1cam significantly increased the severity of aganglionosis in Et-3 and Ednrb null mutant embryos. Furthermore, the colonization of the developing gut by neural crest-derived cells was significantly delayed in L1cam−/y; Et-3−/− and L1cam−/y;Ednrbsl/sl embryos. Conclusions & Inferences We have identified the X-linked gene, L1cam, as the first modifier gene for members of the endothelin signalling pathway during development of the enteric nervous system. Mutations in L1CAM may act to modulate the severity of aganglionosis in some cases of Hirschsprung's disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI