硼酸
吸附
氧烷
腐植酸
化学
硼
无机化学
核化学
光谱学
有机化学
量子力学
物理
肥料
摘要
The fate and mobility of boric acid in the environment is largely controlled by adsorption reactions with soil organic matter and soil minerals to form surface complexes (Soil Sci. Soc. Am. J. 1991, 55, 1582; Geochim. Cosmochim. Acta 2002, 67, 2551; Soil Sci. Soc. Am. J. 1995, 59, 405; Environ. Sci. Technol. 1995, 29, 302). In this study, boric acid adsorption on pure am-Al(OH)3 and 5% (w/w) humic acid (HA) coated am-Al(OH)3 were investigated both as a function of pH (4.5−11) and initial boric acid concentration (0−4.5 mmol L-1). Batch adsorption isotherm experiments were also conducted with samples exposed to atmospheric CO2 and anaerobic (N2) conditions to examine the effects of dissolved CO2 on boric acid adsorption. Boron (B) K-edge X-ray absorption near-edge structure (XANES) spectroscopy was used to investigate the coordination of boric acid adsorbed at mineral/water interfaces. The XANES spectra of boric acid adsorption samples showed that both trigonally and tetrahedrally coordinated B complexes were present on the mineral surface. Both macroscopic and spectroscopic experiments revealed that the combination of HA coating on am-Al(OH)3 and dissolved CO2 decreased boric acid adsorption compared to adsorption on pure am-Al(OH)3.
科研通智能强力驱动
Strongly Powered by AbleSci AI