清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation

克里金 蒙特卡罗方法 计算机科学 不确定度量化 维数之咒 数学优化 可靠性(半导体) 计算 可解释性 地质统计学 算法 数学 机器学习 统计 功率(物理) 空间变异性 物理 量子力学
作者
Benjamin Echard,Nicolas Gayton,Maurice Lemaire
出处
期刊:Structural Safety [Elsevier BV]
卷期号:33 (2): 145-154 被引量:1550
标识
DOI:10.1016/j.strusafe.2011.01.002
摘要

An important challenge in structural reliability is to keep to a minimum the number of calls to the numerical models. Engineering problems involve more and more complex computer codes and the evaluation of the probability of failure may require very time-consuming computations. Metamodels are used to reduce these computation times. To assess reliability, the most popular approach remains the numerous variants of response surfaces. Polynomial Chaos [1] and Support Vector Machine [2] are also possibilities and have gained considerations among researchers in the last decades. However, recently, Kriging, originated from geostatistics, have emerged in reliability analysis. Widespread in optimisation, Kriging has just started to appear in uncertainty propagation [3] and reliability [4], [5] studies. It presents interesting characteristics such as exact interpolation and a local index of uncertainty on the prediction which can be used in active learning methods. The aim of this paper is to propose an iterative approach based on Monte Carlo Simulation and Kriging metamodel to assess the reliability of structures in a more efficient way. The method is called AK-MCS for Active learning reliability method combining Kriging and Monte Carlo Simulation. It is shown to be very efficient as the probability of failure obtained with AK-MCS is very accurate and this, for only a small number of calls to the performance function. Several examples from literature are performed to illustrate the methodology and to prove its efficiency particularly for problems dealing with high non-linearity, non-differentiability, non-convex and non-connex domains of failure and high dimensionality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专一的白萱完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
10秒前
12秒前
15秒前
舒心豪英发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
24秒前
27秒前
科研通AI5应助hihi采纳,获得10
27秒前
量子星尘发布了新的文献求助10
32秒前
Manzia完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
46秒前
back you up应助Polymer72采纳,获得200
48秒前
50秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
失眠店员发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
hihi发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
楚楚完成签到 ,获得积分10
1分钟前
失眠店员发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
badbaby完成签到 ,获得积分10
2分钟前
Tiger完成签到,获得积分10
2分钟前
persist完成签到,获得积分20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
热情的天蓝应助persist采纳,获得10
2分钟前
方白秋完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661074
求助须知:如何正确求助?哪些是违规求助? 3222214
关于积分的说明 9744064
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538