AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation

克里金 蒙特卡罗方法 计算机科学 不确定度量化 维数之咒 数学优化 可靠性(半导体) 计算 可解释性 地质统计学 算法 数学 机器学习 统计 功率(物理) 空间变异性 量子力学 物理
作者
Benjamin Echard,Nicolas Gayton,Maurice Lemaire
出处
期刊:Structural Safety [Elsevier]
卷期号:33 (2): 145-154 被引量:1463
标识
DOI:10.1016/j.strusafe.2011.01.002
摘要

An important challenge in structural reliability is to keep to a minimum the number of calls to the numerical models. Engineering problems involve more and more complex computer codes and the evaluation of the probability of failure may require very time-consuming computations. Metamodels are used to reduce these computation times. To assess reliability, the most popular approach remains the numerous variants of response surfaces. Polynomial Chaos [1] and Support Vector Machine [2] are also possibilities and have gained considerations among researchers in the last decades. However, recently, Kriging, originated from geostatistics, have emerged in reliability analysis. Widespread in optimisation, Kriging has just started to appear in uncertainty propagation [3] and reliability [4], [5] studies. It presents interesting characteristics such as exact interpolation and a local index of uncertainty on the prediction which can be used in active learning methods. The aim of this paper is to propose an iterative approach based on Monte Carlo Simulation and Kriging metamodel to assess the reliability of structures in a more efficient way. The method is called AK-MCS for Active learning reliability method combining Kriging and Monte Carlo Simulation. It is shown to be very efficient as the probability of failure obtained with AK-MCS is very accurate and this, for only a small number of calls to the performance function. Several examples from literature are performed to illustrate the methodology and to prove its efficiency particularly for problems dealing with high non-linearity, non-differentiability, non-convex and non-connex domains of failure and high dimensionality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱喝水完成签到,获得积分10
刚刚
1秒前
嗯呐驳回了慕青应助
1秒前
弄香完成签到,获得积分10
1秒前
Owen应助明理十三采纳,获得10
4秒前
惠储发布了新的文献求助10
6秒前
6秒前
7秒前
shadow完成签到,获得积分10
8秒前
小加发布了新的文献求助20
8秒前
aixiaoming0503完成签到,获得积分10
9秒前
划水的鱼发布了新的文献求助10
10秒前
11秒前
Ava应助外向电脑采纳,获得10
12秒前
13秒前
天天完成签到,获得积分10
13秒前
CZLhaust完成签到,获得积分10
14秒前
15秒前
还有吗发布了新的文献求助30
17秒前
17秒前
SciGPT应助abiu采纳,获得10
19秒前
汉堡包应助迷路的曼梅采纳,获得10
19秒前
20秒前
Lucas应助瓦力文采纳,获得10
20秒前
21秒前
22秒前
科研通AI2S应助王大人很白采纳,获得10
22秒前
pixxo完成签到,获得积分20
23秒前
Bonnie发布了新的文献求助10
23秒前
tcmlida完成签到,获得积分10
24秒前
24秒前
zyc1111111发布了新的文献求助60
25秒前
晚风做酒完成签到,获得积分10
25秒前
25秒前
26秒前
26秒前
坚强的翠霜完成签到 ,获得积分10
26秒前
27秒前
27秒前
27秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129605
求助须知:如何正确求助?哪些是违规求助? 2780380
关于积分的说明 7747647
捐赠科研通 2435666
什么是DOI,文献DOI怎么找? 1294216
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570