Mathematical Modelling of Cell-Fate Decision in Response to Death Receptor Engagement

程序性细胞死亡 生物信息学 计算生物学 表型 细胞命运测定 生物 系统生物学 细胞凋亡 细胞生物学 信号转导 计算机科学 生物信息学 遗传学 基因 转录因子
作者
Laurence Calzone,Laurent Tournier,Simon Fourquet,Denis Thieffry,Boris Zhivotovsky,Emmanuel Barillot,Andreï Zinovyev
标识
DOI:10.1371/journal.pcbi.1000702
摘要

Cytokines such as TNF and FASL can trigger death or survival depending on cell lines and cellular conditions. The mechanistic details of how a cell chooses among these cell fates are still unclear. The understanding of these processes is important since they are altered in many diseases, including cancer and AIDS. Using a discrete modelling formalism, we present a mathematical model of cell fate decision recapitulating and integrating the most consistent facts extracted from the literature. This model provides a generic high-level view of the interplays between NFkappaB pro-survival pathway, RIP1-dependent necrosis, and the apoptosis pathway in response to death receptor-mediated signals. Wild type simulations demonstrate robust segregation of cellular responses to receptor engagement. Model simulations recapitulate documented phenotypes of protein knockdowns and enable the prediction of the effects of novel knockdowns. In silico experiments simulate the outcomes following ligand removal at different stages, and suggest experimental approaches to further validate and specialise the model for particular cell types. We also propose a reduced conceptual model implementing the logic of the decision process. This analysis gives specific predictions regarding cross-talks between the three pathways, as well as the transient role of RIP1 protein in necrosis, and confirms the phenotypes of novel perturbations. Our wild type and mutant simulations provide novel insights to restore apoptosis in defective cells. The model analysis expands our understanding of how cell fate decision is made. Moreover, our current model can be used to assess contradictory or controversial data from the literature. Ultimately, it constitutes a valuable reasoning tool to delineate novel experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
十三发布了新的文献求助10
1秒前
咖啡先生发布了新的文献求助10
2秒前
开朗白玉发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
hhh发布了新的文献求助30
7秒前
幻影阡曦完成签到,获得积分10
9秒前
科研通AI2S应助迷人幻波采纳,获得10
9秒前
10秒前
科研通AI2S应助yq采纳,获得10
11秒前
11秒前
11秒前
JCP发布了新的文献求助10
11秒前
12秒前
Hellolyj应助独特伟泽采纳,获得10
13秒前
13秒前
15秒前
丘比特应助糖糖糖唐采纳,获得10
15秒前
虚幻的电灯胆完成签到,获得积分10
15秒前
酷波er应助himes采纳,获得10
17秒前
19秒前
时尚远山完成签到 ,获得积分10
20秒前
火山发布了新的文献求助30
21秒前
21秒前
hamster完成签到,获得积分10
22秒前
子车茗应助999采纳,获得10
22秒前
23秒前
努力站桩的奶酪完成签到,获得积分10
24秒前
25秒前
頔頔哒哒发布了新的文献求助10
26秒前
坚强怀绿完成签到,获得积分20
26秒前
滚滚真可爱完成签到 ,获得积分10
26秒前
26秒前
chen完成签到,获得积分10
27秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158244
求助须知:如何正确求助?哪些是违规求助? 2809520
关于积分的说明 7882540
捐赠科研通 2468075
什么是DOI,文献DOI怎么找? 1313863
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601943