Mathematical Modelling of Cell-Fate Decision in Response to Death Receptor Engagement

程序性细胞死亡 生物信息学 计算生物学 表型 细胞命运测定 生物 系统生物学 细胞凋亡 细胞生物学 信号转导 计算机科学 生物信息学 遗传学 基因 转录因子
作者
Laurence Calzone,Laurent Tournier,Simon Fourquet,Denis Thieffry,Boris Zhivotovsky,Emmanuel Barillot,Andreï Zinovyev
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:6 (3): e1000702-e1000702 被引量:200
标识
DOI:10.1371/journal.pcbi.1000702
摘要

Cytokines such as TNF and FASL can trigger death or survival depending on cell lines and cellular conditions. The mechanistic details of how a cell chooses among these cell fates are still unclear. The understanding of these processes is important since they are altered in many diseases, including cancer and AIDS. Using a discrete modelling formalism, we present a mathematical model of cell fate decision recapitulating and integrating the most consistent facts extracted from the literature. This model provides a generic high-level view of the interplays between NFκB pro-survival pathway, RIP1-dependent necrosis, and the apoptosis pathway in response to death receptor-mediated signals. Wild type simulations demonstrate robust segregation of cellular responses to receptor engagement. Model simulations recapitulate documented phenotypes of protein knockdowns and enable the prediction of the effects of novel knockdowns. In silico experiments simulate the outcomes following ligand removal at different stages, and suggest experimental approaches to further validate and specialise the model for particular cell types. We also propose a reduced conceptual model implementing the logic of the decision process. This analysis gives specific predictions regarding cross-talks between the three pathways, as well as the transient role of RIP1 protein in necrosis, and confirms the phenotypes of novel perturbations. Our wild type and mutant simulations provide novel insights to restore apoptosis in defective cells. The model analysis expands our understanding of how cell fate decision is made. Moreover, our current model can be used to assess contradictory or controversial data from the literature. Ultimately, it constitutes a valuable reasoning tool to delineate novel experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
要减肥的冥完成签到,获得积分10
1秒前
youy完成签到 ,获得积分10
1秒前
2秒前
科研通AI6应助陈转霞采纳,获得10
3秒前
5秒前
5秒前
搜集达人应助轻松念蕾采纳,获得10
5秒前
标致幼菱完成签到,获得积分10
5秒前
如意绾绾完成签到,获得积分10
7秒前
bioinforiver完成签到,获得积分10
8秒前
8秒前
梦影发布了新的文献求助10
9秒前
10秒前
edtaa发布了新的文献求助10
10秒前
佳佳完成签到,获得积分10
10秒前
Dan完成签到,获得积分10
10秒前
大个应助CJ采纳,获得10
10秒前
豆小豆完成签到,获得积分10
11秒前
11秒前
11秒前
乐乐应助msuyue采纳,获得10
12秒前
申生氏发布了新的文献求助10
12秒前
Hanoi347应助缥缈凡旋采纳,获得50
13秒前
14秒前
杨战浩完成签到,获得积分10
14秒前
杨树完成签到,获得积分10
14秒前
15秒前
如意绾绾发布了新的文献求助30
15秒前
我爱科研科研爱我完成签到,获得积分10
15秒前
笙笙发布了新的文献求助10
16秒前
今后应助汤哈哈哈哈采纳,获得10
16秒前
豆小豆发布了新的文献求助10
17秒前
安静啤酒发布了新的文献求助10
17秒前
18秒前
Urologyzz完成签到,获得积分10
19秒前
益笙鸿老板完成签到 ,获得积分10
19秒前
汉堡包应助冷傲迎梦采纳,获得10
21秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385