化学
肽
质子化
脂质双层
双层
组氨酸
跨膜结构域
跨膜蛋白
生物物理学
膜
天冬氨酸
生物化学
立体化学
氨基酸
生物
受体
有机化学
离子
作者
Francisco N. Barrera,Dhammika Weerakkody,Michael D. Anderson,Oleg A. Andreev,Yana K. Reshetnyak,Donald M. Engelman
标识
DOI:10.1016/j.jmb.2011.08.010
摘要
We have used pHLIP® [pH (low) insertion peptide] to study the roles of carboxyl groups in transmembrane (TM) peptide insertion. pHLIP binds to the surface of a lipid bilayer as a disordered peptide at neutral pH; when the pH is lowered, it inserts across the membrane to form a TM helix. Peptide insertion is reversed when the pH is raised above the characteristic pKa (6.0). A key event that facilitates membrane insertion is the protonation of aspartic acid (Asp) and/or glutamic acid (Glu) residues, since their negatively charged side chains hinder membrane insertion at neutral pH. In order to gain mechanistic understanding, we studied the membrane insertion and exit of a series of pHLIP variants where the four Asp residues were sequentially mutated to nonacidic residues, including histidine (His). Our results show that the presence of His residues does not prevent the pH-dependent peptide membrane insertion at ∼ pH 4 driven by the protonation of carboxyl groups at the inserting end of the peptide. A further pH drop leads to the protonation of His residues in the TM part of the peptide, which induces peptide exit from the bilayer. We also find that the number of ionizable residues that undergo a change in protonation during membrane insertion correlates with the pH-dependent insertion into the lipid bilayer and exit from the lipid bilayer, and that cooperativity increases with their number. We expect that our understanding will be used to improve the targeting of acidic diseased tissue by pHLIP.
科研通智能强力驱动
Strongly Powered by AbleSci AI