亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Role of Plastic Deformation of Binder on Stress Evolution during Charging and Discharging in Lithium-Ion Battery Negative Electrodes

材料科学 复合材料 石墨 电极 压力(语言学) 电解质 锂离子电池 电池(电) 微观结构 锂(药物) 变形(气象学) 电化学 热扩散率 化学 热力学 物理化学 功率(物理) 语言学 哲学 内分泌学 物理 医学
作者
Ehsan Kabiri Rahani,Vivek B. Shenoy
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:160 (8): A1153-A1162 被引量:91
标识
DOI:10.1149/2.046308jes
摘要

We studied the mechanical damage within a lithium-ion graphite-based porous electrode during electrochemical cycling. The effects of charging–discharging rate and the variation in graphite diffusivity on average stress in the electrode cell were investigated. In particular, differences between spatial and average stress evolution in graphite particles were explored. We considered two different microstructures: a) graphite particles connected together with binder bridges and b) graphite particles encased in binder shells. Electrochemical charging–discharging in a composite electrode was simulated by spatially resolving the electrode and electrolyte phases. As indicated by experimental measurements, the binder is assumed to follow an elastic–plastic stress–strain relation. Average stress developed in the electrode was calculated for different binder yield-stress levels and an appropriate yield-stress value was chosen on the basis of experimental findings of the literature. We find the stress in the particles can be of the order of 43 MPa, and can be particularly large in regions where the particles come in close contact with their neighbors. The average stress in the electrodes, however, is the range of 10 MPa and is largely determined by the mechanical properties, in particular the yield stress of the binder. Computed stress profiles were compared qualitatively with experimental measurements using the wafer-curvature method. Elastic stresses and plastic strains predicted by 3D models are shown to be close to those predicted using simpler 2D models of the microstructure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kluberos完成签到 ,获得积分10
刚刚
5秒前
lvlv完成签到,获得积分10
8秒前
大国发布了新的文献求助10
13秒前
龙卡烧烤店完成签到,获得积分10
18秒前
saflgf完成签到,获得积分10
22秒前
OvO_4577完成签到,获得积分10
26秒前
脑洞疼应助满意的世界采纳,获得10
28秒前
汉堡包应助健忘的板凳采纳,获得10
33秒前
jcksonzhj完成签到,获得积分10
34秒前
761997580完成签到 ,获得积分10
36秒前
Criminology34举报wert求助涉嫌违规
38秒前
42秒前
48秒前
自然千山完成签到,获得积分10
49秒前
斯文败类应助张志超采纳,获得10
51秒前
52秒前
共享精神应助waomi采纳,获得10
53秒前
充电宝应助健忘的板凳采纳,获得10
54秒前
55秒前
57秒前
58秒前
老迟到的梦旋完成签到 ,获得积分10
1分钟前
张志超发布了新的文献求助10
1分钟前
C_完成签到,获得积分20
1分钟前
1分钟前
852应助张志超采纳,获得10
1分钟前
一只小锦鲤完成签到 ,获得积分10
1分钟前
斯文败类应助yang采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
Leofar完成签到 ,获得积分10
1分钟前
爆米花应助余闻问采纳,获得10
1分钟前
Yuuuan完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599690
求助须知:如何正确求助?哪些是违规求助? 4685406
关于积分的说明 14838430
捐赠科研通 4669946
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898