Use and Abuse of HOMA Modeling

医学 胰岛素抵抗 胰岛素 基础(医学) 糖尿病 平衡 内科学 队列 流行病学 内分泌学
作者
T. M. Wallace,J Lévy,David R. Matthews
出处
期刊:Diabetes Care [American Diabetes Association]
卷期号:27 (6): 1487-1495 被引量:4549
标识
DOI:10.2337/diacare.27.6.1487
摘要

Homeostatic model assessment (HOMA) is a method for assessing β-cell function and insulin resistance (IR) from basal (fasting) glucose and insulin or C-peptide concentrations. It has been reported in >500 publications, 20 times more frequently for the estimation of IR than β-cell function. This article summarizes the physiological basis of HOMA, a structural model of steady-state insulin and glucose domains, constructed from physiological dose responses of glucose uptake and insulin production. Hepatic and peripheral glucose efflux and uptake were modeled to be dependent on plasma glucose and insulin concentrations. Decreases in β-cell function were modeled by changing the β-cell response to plasma glucose concentrations. The original HOMA model was described in 1985 with a formula for approximate estimation. The computer model is available but has not been as widely used as the approximation formulae. HOMA has been validated against a variety of physiological methods. We review the use and reporting of HOMA in the literature and give guidance on its appropriate use (e.g., cohort and epidemiological studies) and inappropriate use (e.g., measuring β-cell function in isolation). The HOMA model compares favorably with other models and has the advantage of requiring only a single plasma sample assayed for insulin and glucose. In conclusion, the HOMA model has become a widely used clinical and epidemiological tool and, when used appropriately, it can yield valuable data. However, as with all models, the primary input data need to be robust, and the data need to be interpreted carefully.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NN123完成签到 ,获得积分10
刚刚
FFFFFFF应助艺玲采纳,获得10
1秒前
袁访天发布了新的文献求助10
1秒前
辇道增七完成签到,获得积分10
1秒前
1秒前
幽默的太阳完成签到 ,获得积分10
2秒前
2秒前
Nininni完成签到,获得积分10
2秒前
Tao完成签到,获得积分10
2秒前
2秒前
zqh发布了新的文献求助10
2秒前
2秒前
虫虫发布了新的文献求助10
3秒前
无情豪英完成签到 ,获得积分10
3秒前
3秒前
3秒前
完美世界应助sansan采纳,获得10
3秒前
Inahurry发布了新的文献求助10
4秒前
HopeStar发布了新的文献求助10
4秒前
华仔应助科研狗采纳,获得10
4秒前
田様应助Liu采纳,获得10
5秒前
CH完成签到,获得积分10
5秒前
核桃发布了新的文献求助10
5秒前
秣旎完成签到,获得积分10
5秒前
善学以致用应助明天更好采纳,获得10
5秒前
FashionBoy应助remimazolam采纳,获得10
5秒前
sunzhiyu233发布了新的文献求助10
5秒前
我行我素发布了新的文献求助10
6秒前
tengy完成签到,获得积分10
6秒前
斯文败类应助dudu采纳,获得10
6秒前
6秒前
7秒前
思苇完成签到,获得积分10
7秒前
李爱国应助桃子采纳,获得10
7秒前
YJJ完成签到,获得积分10
7秒前
ddly完成签到,获得积分10
7秒前
caitlin完成签到 ,获得积分10
7秒前
屁王发布了新的文献求助10
7秒前
慕青应助奋斗映寒采纳,获得10
7秒前
名丿发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740