Self-testing/correcting for polynomials and for approximate functions

计算机科学 算法 正交多项式 应用数学
作者
Peter Gemmell,Richard J. Lipton,Ronitt Rubinfeld,Madhu Sudan,Avi Wigderson
出处
期刊:Symposium on the Theory of Computing 卷期号:: 33-42 被引量:155
标识
DOI:10.1145/103418.103429
摘要

The study of self-testing/correcting programs was introduced in [8] in order to allow one to use program P to compute function f without trusting that P works correctly. A self-tester for f estimates the fraction of x for which P (x) = f(x); and a self-corrector for f takes a program that is correct on most inputs and turns it into a program that is correct on every input with high probability . Both access P only as a black-box and in some precise way are not allowed to compute the function f . Self-correcting is usually easy when the function has the random self-reducibility property. One class of such functions that has this property is the class of multivariate polynomials over finite fields [4] [12]. We extend this result in two directions. First, we show that polynomials are random self-reducible over more general domains: specifically, over the rationals and over noncommutative rings. Second, we show that one can get self-correctors even when the program satisfies weaker conditions, i.e. when the program has more errors, or when the program behaves in a more adversarial manner by changing the function it computes between successive calls. Self-testing is a much harder task. Previously it was known how to self-test for a few special examples of functions, such as the class of linear functions. We show that one can self-test the whole class of polynomial functions over Zp for prime p. ∗U.C. Berkeley. Supported by NSF Grant No. CCR 8813632 †Princeton University. ‡Princeton University. Supported by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), NSF-STC88-09648. §U.C. Berkeley. Part of this work was done while this author was visiting IBM Almaden. ¶Hebrew University and Princeton University. Partially supported by the Wolfson Research Awards administered by the Israel Academy of Sciences and Humanities. 1[12] independently introduces a notion which is essentially equivalent to self-correcting. We initiate the study of self-testing (and self-correcting) programs which only approximately compute f . This setting captures in particular the digital computation of real valued functions. We present a rigorous framework and obtain the first results in this area: namely that the class of linear functions, the log function and floating point exponentiation can be self-tested. All of the above functions also have self-correctors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助粗暴的达采纳,获得10
刚刚
情怀应助粗暴的达采纳,获得10
刚刚
满意的春天完成签到,获得积分10
刚刚
我是老大应助粗暴的达采纳,获得10
刚刚
科研通AI6应助粗暴的达采纳,获得10
刚刚
刚刚
慕青应助粗暴的达采纳,获得10
刚刚
思源应助yu采纳,获得10
1秒前
1秒前
张博发布了新的文献求助10
2秒前
好的哥发布了新的文献求助10
3秒前
忘的澜发布了新的文献求助10
3秒前
科研通AI2S应助wulanshu采纳,获得10
4秒前
香蕉觅云应助随遇而安采纳,获得10
4秒前
李爱国应助常常采纳,获得10
4秒前
Orange应助star采纳,获得10
4秒前
4秒前
5秒前
5秒前
科研通AI6应助CHENJINXI采纳,获得10
5秒前
悦耳人生发布了新的文献求助10
5秒前
王多肉发布了新的文献求助10
6秒前
6秒前
科研通AI6应助555采纳,获得10
6秒前
7秒前
陈影完成签到,获得积分10
7秒前
满意白开水完成签到,获得积分10
8秒前
科研通AI6应助缥缈的水彤采纳,获得10
8秒前
redflower发布了新的文献求助10
8秒前
JamesPei应助王与可采纳,获得10
9秒前
科研通AI6应助壮观的可以采纳,获得10
9秒前
Li完成签到,获得积分20
9秒前
李健应助cjw采纳,获得10
10秒前
10秒前
xiaominza发布了新的文献求助30
10秒前
万能图书馆应助西瓜妹采纳,获得10
10秒前
粗暴的达发布了新的文献求助10
10秒前
科研通AI6应助风中泰坦采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905