脂质体
溶解
生物物理学
胞浆
化学
荧光
荧光显微镜
微量注射
小泡
寡核苷酸
膜
生物化学
生物
细胞生物学
DNA
物理
酶
量子力学
作者
B. Lucas,Katrien Remaut,Niek N. Sanders,Kevin Braeckmans,Stefaan C. De Smedt,J. Demeester
标识
DOI:10.1016/j.jconrel.2004.12.017
摘要
To obtain real breakthroughs in antisense therapy, it is necessary to understand the cellular behavior of antisense delivery systems. Fluorescence fluctuation spectroscopy (FFS), which measures in time fluorescence fluctuations in the excitation volume of a microscope and which can thus be applied on a cellular scale, shows potential for this purpose. In this study dual color FFS was explored to characterize the complexation (association and dissociation) between Cy5-labeled oligonucleotides (Cy5-ONs) and FITC-labeled cationic liposomes (FITC-liposomes) in respectively buffer, cell lysate and the cytosol of Vero cells. In Hepes buffer the association of the Cy5-ONs to the FITC-liposomes could be clearly observed from the high peaks of Cy5- and FITC-fluorescence, which appeared simultaneously in the excitation volume. This was explained by the fact that in the complexed state many Cy5-ONs and FITC-liposomes are bound to each other and thus move together through the excitation volume thereby resulting in high fluorescence 'FITC/Cy5-peaks'. FFS measurements on FITC-liposome/Cy5-ONs complexes in cell lysate revealed that a minor part of the Cy5-ONs was released from the complexes. The major part of the Cy5-ONs remained in the complexes, which also seemed to aggregate in cell lysate. In agreement with the measurements in cell lysate, after microinjection of FITC-liposome/Cy5-ONs complexes in the cytosol of Vero cells a part of the Cy5-ONs was released (as Cy-ONs were detected by FFS in the nuclei) while the other part remained bound (as Cy5-peaks were frequently observed in the cytosol). As will be explained, the Cy5-peaks could be due both to Cy5-ONs clustered with cytosol components and Cy5-ONs still complexed to FITC-liposomes with quenched FITC-fluorescence.
科研通智能强力驱动
Strongly Powered by AbleSci AI