Insights into the membrane interaction mechanism and antibacterial properties of chensinin-1b

抗菌肽 抗菌剂 生物物理学 无规线圈 生物化学 肽序列 细胞膜 脂质体 大肠杆菌 细菌外膜 化学 生物 微生物学 蛋白质二级结构 基因
作者
Yue Sun,Weibing Dong,Lijun Sun,Li Ma,Dejing Shang
出处
期刊:Biomaterials [Elsevier BV]
卷期号:37: 299-311 被引量:73
标识
DOI:10.1016/j.biomaterials.2014.10.041
摘要

Antimicrobial peptides (AMPs) with non-specific membrane disrupting activities are thought to exert their antimicrobial activity as a result of their cationicity, hydrophobicity and α-helical or β-sheet structures. Chensinin-1, a native peptide from skin secretions of Rana chensinensis, fails to manifest its desired biological properties because its low hydrophobic nature and an adopted random coil structure in a membrane-mimetic environment. In this study, chensinin-1b was designed by rearranging the amino acid sequence of its hydrophilic/polar residues on one face and its hydrophobic/nonpolar residues on the opposite face according to its helical diagram, and by replacing three Gly residues with three Trp residues. Introduction of Trp residues significantly promoted the binding of the peptide to the bacterial outer membrane and exerted bactericidal activity through cytoplasmic membrane damage. Chensinin-1b demonstrates higher antimicrobial activity and greater cell selectivity than its parent peptide, chensinin-1. The electrostatic interactions between chensinin-1b and lipopolysaccharide (LPS) may have facilitated the uptake of the peptide into Gram-negative cells and be also helpful to disrupt the bacterial cytoplasmic membrane, as evidenced by depolarisation of the membrane potential and leakage of calceins from the liposomes of Escherichia coli and Staphylococcus aureus. Chensinin-1b was also found to penetrate mouse skin and was also effective in vivo, as measured by hydroxyproline levels in a wound infection mouse model, and could therefore act as an anti-infective agent for wound healing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DT完成签到,获得积分10
2秒前
旺仔发布了新的文献求助10
2秒前
3秒前
wanci应助Lavenda采纳,获得10
4秒前
orixero应助郦惋清采纳,获得10
4秒前
wxq123完成签到,获得积分20
4秒前
4秒前
Fort发布了新的文献求助10
4秒前
5秒前
淡定的书萱完成签到 ,获得积分20
6秒前
量子星尘发布了新的文献求助10
6秒前
nn发布了新的文献求助20
7秒前
7秒前
9秒前
稳重的峻熙完成签到,获得积分10
9秒前
10秒前
xioabu发布了新的文献求助10
10秒前
10秒前
11秒前
TT完成签到 ,获得积分10
12秒前
zq1992nl发布了新的文献求助10
12秒前
清明雨上发布了新的文献求助10
12秒前
木柟关注了科研通微信公众号
12秒前
13秒前
14秒前
匆匆完成签到,获得积分10
14秒前
14秒前
jia发布了新的文献求助10
14秒前
15秒前
15秒前
maox1aoxin应助Liou采纳,获得50
15秒前
lyf发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
张德彪完成签到,获得积分10
16秒前
YY发布了新的文献求助10
16秒前
17秒前
cugzhl完成签到 ,获得积分10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662961
求助须知:如何正确求助?哪些是违规求助? 3223721
关于积分的说明 9752858
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606229
邀请新用户注册赠送积分活动 758325
科研通“疑难数据库(出版商)”最低求助积分说明 734785