Pressure-Dependent Leak Detection Model and Its Application to a District Water System

泄漏(经济) 校准 计算机科学 管网分析 泄漏 工程类 环境科学 环境工程 统计 数学 机械 物理 宏观经济学 经济
作者
Zheng Yi Wu,Paul Sage,David Turtle
出处
期刊:Journal of Water Resources Planning and Management [American Society of Civil Engineers]
卷期号:136 (1): 116-128 被引量:172
标识
DOI:10.1061/(asce)0733-9496(2010)136:1(116)
摘要

Cost-effective reduction of water loss is a compelling but challenging task for water utilities. This paper presents a model-based optimization method for leakage detection of water distribution systems. Leakage hotspots are assumed to exist at the model nodes identified. Leakage is represented as pressure-dependent demand simulated as emitter flows at selected model nodes. The leakage detection method is formulated to optimize the leakage node locations and their associated emitter coefficients such that the differences between the model predicted and the field observed values for pressure and flow are minimized. The optimization problem is solved by using a competent genetic algorithm. The leakage detection method is developed as an add-on feature of the optimization-based model calibration tool. This enables engineers to undertake leakage hotspot optimization as an independent task or combine the task with hydraulic model calibration, subject to suitably varied field data. Two case studies are discussed in this paper including an example from literature and a district water system in the United Kingdom. The results obtained illustrate that the optimization model for predicting leakage hotspots can be effective despite the recognized challenges of model calibration and the physical measurement limitations from the pressure and flow surveys also referred to as field tests. It is found that the method is effective at being applied for hydraulic conditions that occur in the early hours of the morning, often on water networks with excess design capacity and where hydraulic gradients are slack and loggers may sometimes be working close to their limits of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
寻觅驳回了桐桐应助
2秒前
3秒前
华仔应助初雪平寒采纳,获得30
3秒前
4秒前
科研通AI2S应助zzd12318采纳,获得10
5秒前
chengmin完成签到 ,获得积分10
5秒前
Eikou完成签到,获得积分10
6秒前
yyuchen完成签到,获得积分10
6秒前
123发布了新的文献求助10
7秒前
8秒前
杨露发布了新的文献求助10
9秒前
调研昵称发布了新的文献求助10
9秒前
ding应助李昕123采纳,获得10
10秒前
jym完成签到,获得积分10
11秒前
11秒前
背后丹妗完成签到,获得积分10
13秒前
Yolo完成签到,获得积分10
13秒前
123完成签到,获得积分10
13秒前
小马甲应助听雨采纳,获得10
15秒前
若尘完成签到 ,获得积分10
16秒前
紫色哀伤完成签到,获得积分10
16秒前
yy关闭了yy文献求助
17秒前
17秒前
17秒前
17秒前
小一完成签到,获得积分10
19秒前
ShowMaker应助Yolo采纳,获得20
19秒前
20秒前
yyuchen发布了新的文献求助10
23秒前
23秒前
今后应助草莓熊采纳,获得10
23秒前
23秒前
泪雨煊完成签到,获得积分10
24秒前
24秒前
26秒前
科研通AI2S应助小石头采纳,获得10
26秒前
共享精神应助LeiX采纳,获得10
26秒前
27秒前
adelalady完成签到,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148089
求助须知:如何正确求助?哪些是违规求助? 2799137
关于积分的说明 7833616
捐赠科研通 2456348
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628086
版权声明 601655