亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change

遥感 云计算 影子(心理学) 像素 计算机科学 算法 地质学 人工智能 心理学 操作系统 地貌学 心理治疗师
作者
Zhe Zhu,Curtis E. Woodcock
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:152: 217-234 被引量:402
标识
DOI:10.1016/j.rse.2014.06.012
摘要

We developed a new algorithm called Tmask (multiTemporal mask) for automated masking of cloud, cloud shadow, and snow for multitemporal Landsat images. This algorithm consists of two steps. The first step is based on a single-date algorithm called Fmask (Function of mask) that initially screens most of the clouds, cloud shadows, and snow. The second step benefits from the extra temporal information from the remaining “clear” pixels and further improves the cloud, cloud shadow, and snow mask. Three Top Of Atmosphere (TOA) reflectance bands (Bands 2, 4, and 5 — Landsat-7 band numbering) are used in a Robust Iteratively Reweighted Least Squares (RIRLS) method to estimate a time series model for each pixel. By comparing model estimates with Landsat observations for the three spectral bands, the Tmask algorithm is capable of detecting any remaining clouds, cloud shadows, and snow for an entire stack of Landsat images. Generally, this algorithm will not falsely identify land cover changes as clouds, cloud shadows, or snow, as it is capable of modeling land cover change. The multitemporal images also provide extra information for better discrimination of cloud and snow, which is difficult for single-date algorithm. A snow threshold is derived for Band 5 TOA reflectance for each pixel at each specific time based on a modified Norwegian Linear Reflectance-to-Snow-Cover (NLR) algorithm. By comparing the results of Tmask with a single-date algorithm (Fmask) for multitemporal Landsat images located at Path 12 Row 31, significant improvements are observed for identification of clouds, cloud shadows, and snow. The most significant improvement is observed for cloud shadow detection. Many of the errors in cloud, cloud shadow, and snow detection observed in Fmask are corrected by the Tmask algorithm. The goal is development of a cloud, cloud shadow, and snow detection algorithm that results in a multitemporal stack of images that is free of “noise” factors and thus suitable for detection of land cover change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
李李发布了新的文献求助10
9秒前
TZ完成签到 ,获得积分10
12秒前
Dritsw应助李李采纳,获得10
14秒前
15秒前
41秒前
爱静静应助西门吹雪采纳,获得30
47秒前
搜集达人应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
Dritsw应助Maple采纳,获得10
54秒前
郑雅茵发布了新的文献求助30
55秒前
1分钟前
Tendency完成签到 ,获得积分10
1分钟前
郑雅茵完成签到 ,获得积分20
1分钟前
小张完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Dritsw应助LANER采纳,获得10
1分钟前
AAA发布了新的文献求助10
1分钟前
jacs111发布了新的文献求助10
1分钟前
小胖完成签到 ,获得积分10
2分钟前
多情的续完成签到,获得积分10
2分钟前
ktw完成签到,获得积分10
2分钟前
2分钟前
2分钟前
呆呆不呆Zz完成签到,获得积分10
2分钟前
令宏发布了新的文献求助30
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Dritsw应助罗舒采纳,获得10
2分钟前
JamesPei应助霸气的金鱼采纳,获得10
2分钟前
2分钟前
儒雅老太发布了新的文献求助10
2分钟前
科研通AI5应助feifei采纳,获得10
2分钟前
2分钟前
儒雅老太完成签到,获得积分10
3分钟前
华仔应助Maple采纳,获得10
3分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214