Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change

遥感 云计算 影子(心理学) 像素 计算机科学 算法 地质学 人工智能 心理学 操作系统 地貌学 心理治疗师
作者
Zhe Zhu,Curtis E. Woodcock
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:152: 217-234 被引量:402
标识
DOI:10.1016/j.rse.2014.06.012
摘要

We developed a new algorithm called Tmask (multiTemporal mask) for automated masking of cloud, cloud shadow, and snow for multitemporal Landsat images. This algorithm consists of two steps. The first step is based on a single-date algorithm called Fmask (Function of mask) that initially screens most of the clouds, cloud shadows, and snow. The second step benefits from the extra temporal information from the remaining “clear” pixels and further improves the cloud, cloud shadow, and snow mask. Three Top Of Atmosphere (TOA) reflectance bands (Bands 2, 4, and 5 — Landsat-7 band numbering) are used in a Robust Iteratively Reweighted Least Squares (RIRLS) method to estimate a time series model for each pixel. By comparing model estimates with Landsat observations for the three spectral bands, the Tmask algorithm is capable of detecting any remaining clouds, cloud shadows, and snow for an entire stack of Landsat images. Generally, this algorithm will not falsely identify land cover changes as clouds, cloud shadows, or snow, as it is capable of modeling land cover change. The multitemporal images also provide extra information for better discrimination of cloud and snow, which is difficult for single-date algorithm. A snow threshold is derived for Band 5 TOA reflectance for each pixel at each specific time based on a modified Norwegian Linear Reflectance-to-Snow-Cover (NLR) algorithm. By comparing the results of Tmask with a single-date algorithm (Fmask) for multitemporal Landsat images located at Path 12 Row 31, significant improvements are observed for identification of clouds, cloud shadows, and snow. The most significant improvement is observed for cloud shadow detection. Many of the errors in cloud, cloud shadow, and snow detection observed in Fmask are corrected by the Tmask algorithm. The goal is development of a cloud, cloud shadow, and snow detection algorithm that results in a multitemporal stack of images that is free of “noise” factors and thus suitable for detection of land cover change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英吉利25发布了新的文献求助10
1秒前
1秒前
1秒前
公西翠萱发布了新的文献求助10
2秒前
陈洋完成签到,获得积分20
3秒前
希望天下0贩的0应助Foalphaz采纳,获得10
3秒前
Xumeiling完成签到 ,获得积分10
3秒前
yoonkk完成签到,获得积分10
3秒前
Sand发布了新的文献求助20
4秒前
mookie发布了新的文献求助30
4秒前
4秒前
5秒前
zxd发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
ZCZD完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
Danqing发布了新的文献求助10
8秒前
8秒前
liuzhanyu发布了新的文献求助10
9秒前
hha完成签到,获得积分20
9秒前
9秒前
10秒前
11秒前
悦耳指甲油完成签到,获得积分20
11秒前
量子星尘发布了新的文献求助10
11秒前
科研通AI2S应助大胆诗云采纳,获得10
12秒前
Owen应助诺克萨斯采纳,获得10
13秒前
13秒前
Hello应助冷艳的纸鹤采纳,获得10
13秒前
13秒前
我是老大应助Arsenel采纳,获得10
13秒前
hi_traffic完成签到,获得积分10
14秒前
大可发布了新的文献求助10
14秒前
15秒前
wzc发布了新的文献求助10
15秒前
酷波er应助zxd采纳,获得10
15秒前
16秒前
future发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718285
求助须知:如何正确求助?哪些是违规求助? 5251746
关于积分的说明 15285174
捐赠科研通 4868514
什么是DOI,文献DOI怎么找? 2614220
邀请新用户注册赠送积分活动 1564054
关于科研通互助平台的介绍 1521548