Object based image analysis for remote sensing

像素 地理空间分析 计算机科学 遥感 地理信息系统 可用的 分割 图像处理 基于对象 对象(语法) 图像(数学) 地图学 地理 人工智能 计算机视觉 万维网
作者
Thomas Blaschke
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:65 (1): 2-16 被引量:3862
标识
DOI:10.1016/j.isprsjprs.2009.06.004
摘要

Remote sensing imagery needs to be converted into tangible information which can be utilised in conjunction with other data sets, often within widely used Geographic Information Systems (GIS). As long as pixel sizes remained typically coarser than, or at the best, similar in size to the objects of interest, emphasis was placed on per-pixel analysis, or even sub-pixel analysis for this conversion, but with increasing spatial resolutions alternative paths have been followed, aimed at deriving objects that are made up of several pixels. This paper gives an overview of the development of object based methods, which aim to delineate readily usable objects from imagery while at the same time combining image processing and GIS functionalities in order to utilize spectral and contextual information in an integrative way. The most common approach used for building objects is image segmentation, which dates back to the 1970s. Around the year 2000 GIS and image processing started to grow together rapidly through object based image analysis (OBIA - or GEOBIA for geospatial object based image analysis). In contrast to typical Landsat resolutions, high resolution images support several scales within their images. Through a comprehensive literature review several thousand abstracts have been screened, and more than 820 OBIA-related articles comprising 145 journal papers, 84 book chapters and nearly 600 conference papers, are analysed in detail. It becomes evident that the first years of the OBIA/GEOBIA developments were characterised by the dominance of ‘grey’ literature, but that the number of peer-reviewed journal articles has increased sharply over the last four to five years. The pixel paradigm is beginning to show cracks and the OBIA methods are making considerable progress towards a spatially explicit information extraction workflow, such as is required for spatial planning as well as for many monitoring programmes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
饱满绮波完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
YeeLeeLee完成签到,获得积分10
2秒前
谭续燊完成签到,获得积分10
2秒前
马上动起来完成签到,获得积分0
2秒前
3秒前
hah完成签到,获得积分10
4秒前
先锋老刘001完成签到 ,获得积分20
4秒前
量子星尘发布了新的文献求助10
6秒前
Hua发布了新的文献求助10
6秒前
7秒前
小蓝发布了新的文献求助10
10秒前
10秒前
GWT发布了新的文献求助10
11秒前
怡然白竹完成签到 ,获得积分10
12秒前
Gloria的保镖完成签到 ,获得积分10
13秒前
wjw发布了新的文献求助10
13秒前
fuyg完成签到,获得积分10
13秒前
我睡觉的时候不困完成签到 ,获得积分10
13秒前
冷酷夏真完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
qin完成签到,获得积分10
17秒前
20秒前
xiaofan完成签到,获得积分10
20秒前
斯文的乌完成签到 ,获得积分10
21秒前
22秒前
23秒前
科研大佬的路上完成签到 ,获得积分10
26秒前
夜信完成签到,获得积分10
28秒前
sdfdzhang完成签到 ,获得积分0
28秒前
calico完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
30秒前
不系舟完成签到,获得积分10
31秒前
John完成签到 ,获得积分10
31秒前
凯卮完成签到,获得积分10
32秒前
ywindm完成签到,获得积分10
33秒前
Alex-Song完成签到 ,获得积分0
33秒前
DanaLin完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900