Targeting Mitochondrial Biogenesis to Treat Insulin Resistance

胰岛素抵抗 线粒体生物发生 胰岛素 线粒体 2型糖尿病 糖尿病 医学 生物 生物信息学 内分泌学 内科学 细胞生物学
作者
Mònica Zamora,Josep A. Villena
出处
期刊:Current Pharmaceutical Design [Bentham Science]
卷期号:20 (35): 5527-5557 被引量:28
标识
DOI:10.2174/1381612820666140306102514
摘要

Over the last century, the prevalence of type 2 diabetes has dramatically increased, reaching the status of epidemic. Because insulin resistance is considered the primary cause of type 2 diabetes, the identification of the cellular processes and gene networks that lead to an impairment of insulin action in target tissues is of crucial importance for the development of new drugs and therapeutic strategies to treat or prevent the disease. Numerous studies in humans and animal models have shown that insulin resistance is frequently associated to reduced mitochondrial mass or oxidative function in insulin sensitive tissues, leading to the hypothesis that defective overall mitochondrial activity could play a relevant role in the etiology of insulin resistance and, therefore, in type 2 diabetes. Although the causal relationship between mitochondrial dysfunction and insulin resistance is still controversial, numerous studies show that lifestyle or pharmacological interventions that improve insulin sensitivity are frequently associated to an increase in mitochondrial function and whole body energy expenditure. Therefore, increasing mitochondrial mass and oxidative activity is viewed as a potential therapeutic approach for the treatment of insulin resistance. Here, we review the current knowledge on the role of mitochondria in the pathogenesis of insulin resistance and discuss some of the potential therapeutic strategies and pharmacological targets for the treatment of insulin resistance based on the activation of mitochondrial biogenesis and the increase of mitochondrial oxidative function. Keywords: Type 2 diabetes, mitochondrial dysfunction, calorie restriction, exercise, AMPK, SIRT1, PGC-1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实的白开水完成签到,获得积分20
1秒前
1秒前
2秒前
JamesPei应助玫瑰采纳,获得10
2秒前
淳于三问应助认真科研采纳,获得10
3秒前
3秒前
梵星星发布了新的文献求助10
4秒前
无花果应助夏姬宁静采纳,获得10
4秒前
wangke发布了新的文献求助10
4秒前
4秒前
4秒前
6秒前
6秒前
7秒前
科研通AI2S应助清新的静枫采纳,获得10
7秒前
ljhya发布了新的文献求助10
7秒前
choshuenco完成签到,获得积分10
7秒前
123完成签到,获得积分20
8秒前
王花花发布了新的文献求助10
9秒前
tutu完成签到,获得积分10
9秒前
完美世界应助小薛要努力采纳,获得10
10秒前
英姑应助朱先生采纳,获得10
11秒前
包容友儿发布了新的文献求助30
11秒前
Flanker应助JinkFun采纳,获得10
12秒前
众生平等发布了新的文献求助10
12秒前
思源应助李浩采纳,获得10
13秒前
五颜六色的白完成签到,获得积分10
13秒前
某某完成签到,获得积分20
14秒前
Gracezzz完成签到 ,获得积分10
14秒前
Ava应助JJun采纳,获得10
15秒前
共享精神应助安静严青采纳,获得10
17秒前
17秒前
药剂机智小仓鼠完成签到,获得积分10
17秒前
17秒前
众生平等完成签到,获得积分10
18秒前
Viva应助sylc001采纳,获得60
18秒前
19秒前
19秒前
19秒前
科研通AI2S应助霸气乐菱采纳,获得10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306508
求助须知:如何正确求助?哪些是违规求助? 2940232
关于积分的说明 8496415
捐赠科研通 2614549
什么是DOI,文献DOI怎么找? 1428283
科研通“疑难数据库(出版商)”最低求助积分说明 663307
邀请新用户注册赠送积分活动 648187