计算机科学
可分离空间
非参数统计
协方差
统计推断
参数统计
估计理论
推论
核(代数)
谱密度估计
香料
模式识别(心理学)
参数化模型
数学
人工智能
算法
统计
数学分析
傅里叶变换
工程类
电气工程
组合数学
作者
Petre Stoica,Prabhu Babu,Jian Li
标识
DOI:10.1109/tsp.2010.2086452
摘要
Separable models occur frequently in spectral analysis, array processing, radar imaging and astronomy applications. Statistical inference methods for these models can be categorized in three large classes: parametric, nonparametric (also called “dense”) and semiparametric (also called “sparse”). We begin by discussing the advantages and disadvantages of each class. Then we go on to introduce a new semiparametric/sparse method called SPICE (a semiparametric/sparse iterative covariance-based estimation method). SPICE is computationally quite efficient, enjoys global convergence properties, can be readily used in the case of replicated measurements and, unlike most other sparse estimation methods, does not require any subtle choices of user parameters. We illustrate the statistical performance of SPICE by means of a line-spectrum estimation study for irregularly sampled data.
科研通智能强力驱动
Strongly Powered by AbleSci AI