Feature subset selection and feature ranking for multivariate time series

计算机科学 主成分分析 特征选择 聚类分析 模式识别(心理学) 数据挖掘 人工智能 排名(信息检索) 特征(语言学) 选择(遗传算法) 特征提取 多元统计 机器学习 语言学 哲学
作者
Hyunjin Yoon,Kevin J Yang,Cyrus Shahabi
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:17 (9): 1186-1198 被引量:186
标识
DOI:10.1109/tkde.2005.144
摘要

Feature subset selection (FSS) is a known technique to preprocess the data before performing any data mining tasks, e.g., classification and clustering. FSS provides both cost-effective predictors and a better understanding of the underlying process that generated the data. We propose a family of novel unsupervised methods for feature subset selection from multivariate time series (MTS) based on common principal component analysis, termed CLeVer. Traditional FSS techniques, such as recursive feature elimination (RFE) and Fisher criterion (FC), have been applied to MTS data sets, e.g., brain computer interface (BCI) data sets. However, these techniques may lose the correlation information among features, while our proposed techniques utilize the properties of the principal component analysis to retain that information. In order to evaluate the effectiveness of our selected subset of features, we employ classification as the target data mining task. Our exhaustive experiments show that CLeVer outperforms RFE, FC, and random selection by up to a factor of two in terms of the classification accuracy, while taking up to 2 orders of magnitude less processing time than RFE and FC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初步完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
猪猪hero发布了新的文献求助10
3秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
嘿嘿应助科研通管家采纳,获得10
4秒前
rebubu应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得30
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
直率代荷应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
不二子发布了新的文献求助10
5秒前
6秒前
6秒前
pancake发布了新的文献求助10
6秒前
务实的南露完成签到,获得积分10
8秒前
打打应助棋士采纳,获得10
8秒前
8秒前
yang完成签到,获得积分10
9秒前
咸鱼完成签到 ,获得积分10
11秒前
11秒前
11秒前
猪猪hero发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
脑洞疼应助陈塘关守将采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694202
求助须知:如何正确求助?哪些是违规求助? 5096252
关于积分的说明 15213274
捐赠科研通 4850853
什么是DOI,文献DOI怎么找? 2602038
邀请新用户注册赠送积分活动 1553878
关于科研通互助平台的介绍 1511814