木质部
化学
超量积累植物
锌
镉
开枪
植物
生物化学
环境化学
植物修复
生物
重金属
有机化学
作者
Jean-Yves Cornu,Ulrich Deinlein,Stephan Höreth,Manuel Braun,Holger Schmidt,Michael Weber,Daniel P. Persson,Steen Husted,Jan K. Schjøerring,Stephan Clemens
摘要
Summary Elevated nicotianamine synthesis in roots of A rabidopsis halleri has been established as a zinc (Zn) hyperaccumulation factor. The main objective of this study was to elucidate the mechanism of nicotianamine‐dependent root‐to‐shoot translocation of metals. Metal tolerance and accumulation in wild‐type ( WT ) and Ah NAS 2 ‐ RNA interference ( RNA i) plants were analysed. Xylem exudates were subjected to speciation analysis and metabolite profiling. Suppression of root nicotianamine synthesis had no effect on Zn and cadmium (Cd) tolerance but rendered plants nickel (Ni)‐hypersensitive. It also led to a reduction of Zn root‐to‐shoot translocation, yet had the opposite effect on Ni mobility, even though both metals form coordination complexes of similar stability with nicotianamine. Xylem Zn concentrations were positively, yet nonstoichiometrically, correlated with nicotianamine concentrations. Two fractions containing Zn coordination complexes were detected in WT xylem. One of them was strongly reduced in Ah NAS 2 ‐suppressed plants and coeluted with 67 Zn‐labelled organic acid complexes. Organic acid concentrations were not responsive to nicotianamine concentrations and sufficiently high to account for complexing the coordinated Zn. We propose a key role for nicotianamine in controlling the efficiency of Zn xylem loading and thereby the formation of Zn coordination complexes with organic acids, which are the main Zn ligands in the xylem but are not rate‐limiting for Zn translocation.
科研通智能强力驱动
Strongly Powered by AbleSci AI