阿奇霉素
恶性疟原虫
药理学
氯喹
疟疾
奎宁
医学
蒿甲醚
甲氟喹
青蒿素
生物
抗生素
微生物学
免疫学
作者
Colin Ohrt,George D. Willingmyre,Patricia Lee,Charles Knirsch,Wilbur K. Milhous
标识
DOI:10.1128/aac.46.8.2518-2524.2002
摘要
Initial field malaria prophylaxis trials with azithromycin revealed insufficient efficacy against falciparum malaria to develop azithromycin as a single agent. The objective of this in vitro study was to determine the best drug combination(s) to evaluate for future malaria treatment and prophylaxis field trials. In vitro, azithromycin was tested in combination with chloroquine against 10 representative Plasmodium falciparum isolates. Azithromycin was also assessed in combination with eight additional antimalarial agents against two or three multidrug-resistant P. falciparum isolates. Parasite susceptibility testing was carried out with a modification of the semiautomated microdilution technique. The incubation period was extended from the usual 48 h to 68 h. Fifty percent inhibitory concentrations (IC(50)s) were calculated for each drug alone and for drugs in fixed combinations of their respective IC(50)s (1:1, 3:1, 1:3, 4:1, 1:4, and 5:1). These data were used to calculate fractional inhibitory concentrations and isobolograms. Chloroquine-azithromycin studies revealed a range of activity from additive to synergistic interactions for the eight chloroquine-resistant isolates tested, while an additive response was seen for the two chloroquine-sensitive isolates. Quinine, tafenoquine, and primaquine were additive to synergistic with azithromycin, while dihydroartemisinin was additive with a trend toward antagonism. The remaining interactions appeared to be additive. These results suggest that a chloroquine-azithromycin combination should be evaluated for malaria prophylaxis and that a quinine-azithromycin combination should be evaluated for malaria treatment in areas of drug resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI