Reducing the Variance of the Prescribing Preference-based Instrumental Variable Estimates of the Treatment Effect

混淆 估计员 方差膨胀系数 差异(会计) 工具变量 统计 医学 偏爱 同种类的 计量经济学 标准差 膨胀(宇宙学) 估计 变量(数学) 数学 回归分析 经济 会计 数学分析 物理 组合数学 管理 多重共线性 理论物理学
作者
Michał Abrahamowicz,Marie‐Eve Beauchamp,Raluca Ionescu‐Ittu,Joseph A. Delaney,Louise Pilote
出处
期刊:American Journal of Epidemiology [Oxford University Press]
卷期号:174 (4): 494-502 被引量:17
标识
DOI:10.1093/aje/kwr057
摘要

Instrumental variable (IV) methods based on the physician's prescribing preference may remove bias due to unobserved confounding in pharmacoepidemiologic studies. However, IV estimates, originally defined as the treatment prescribed for a single previous patient of a given physician, show important variance inflation. The authors proposed and validated in simulations a new method to reduce the variance of IV estimates even when physicians' preferences change over time. First, a potential "change-time," after which the physician's preference has changed, was estimated for each physician. Next, all patients of a given physician were divided into 2 homogeneous subsets: those treated before the change-time versus those treated after the change-time. The new IV was defined as the proportion of all previous patients in a corresponding homogeneous subset who were prescribed a specific drug. In simulations, all alternative IV estimators avoided strong bias of the conventional estimates. The change-time method reduced the standard deviation of the estimates by approximately 30% relative to the original previous patient-based IV. In an empirical example, the proposed IV correlated better with the actual treatment and yielded smaller standard errors than alternative IV estimators. Therefore, the new method improved the overall accuracy of IV estimates in studies with unobserved confounding and time-varying prescribing preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
思源应助温暖代芙采纳,获得10
2秒前
寒冷的迎南完成签到,获得积分10
2秒前
李1完成签到 ,获得积分10
4秒前
小二郎应助tangpc采纳,获得30
4秒前
SunLijia完成签到 ,获得积分10
5秒前
ChengxinXie发布了新的文献求助20
5秒前
Lucky发布了新的文献求助10
5秒前
STZ完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
俊逸的雨安完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
科研通AI5应助薇薇采纳,获得10
10秒前
wjw完成签到,获得积分10
11秒前
11完成签到,获得积分10
11秒前
11秒前
小小技术工完成签到 ,获得积分10
11秒前
12秒前
xio发布了新的文献求助10
13秒前
13秒前
11发布了新的文献求助10
13秒前
噔噔蹬发布了新的文献求助10
13秒前
淡然雪枫完成签到,获得积分10
14秒前
温暖代芙发布了新的文献求助10
14秒前
Hello应助shiko采纳,获得10
14秒前
15秒前
苗长青发布了新的文献求助10
16秒前
何处芳歇完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
19秒前
20秒前
完美世界应助FN采纳,获得10
21秒前
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Experimental toxicity and carcinogenicity of aflatoxins 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728357
求助须知:如何正确求助?哪些是违规求助? 3273369
关于积分的说明 9981509
捐赠科研通 2988780
什么是DOI,文献DOI怎么找? 1639831
邀请新用户注册赠送积分活动 779001
科研通“疑难数据库(出版商)”最低求助积分说明 747850