Strong electronic correlations are often associated with the proximity of a Mott-insulating state. In recent years however, it has become increasingly clear that the Hund’s rule coupling (intra-atomic exchange) is responsible for strong correlations in multiorbital metallic materials that are not close to a Mott insulator. Hund’s coupling has two effects: It influences the energetics of the Mott gap and strongly suppresses the coherence scale for the formation of a Fermi liquid. A global picture has emerged recently, which emphasizes the importance of the average occupancy of the shell as a control parameter. The most dramatic effects occur away from half-filling or single occupancy. We review the theoretical understanding and physical properties of these Hund’s metals, together with the relevance of this concept to transition-metal oxides (TMOs) of the 3d, and especially 4d, series (such as ruthenates), as well as to the iron-based superconductors (iron pnictides and chalcogenides).