Regularizing inverse problems in image processing with a manifold-based model of overlapping patches

修补 歧管(流体力学) 核(代数) 数学 线性子空间 计算机科学 交叉口(航空) 稳健性(进化) 人工智能 算法 图像(数学) 模式识别(心理学) 纯数学 机械工程 生物化学 化学 工程类 基因 航空航天工程
作者
Yevgen Matviychuk,Shannon M. Hughes
标识
DOI:10.1109/icassp.2014.6854625
摘要

Local patch-based models have been shown to be effective in numerous image processing applications and have become the core of the state-of-the-art denoising, inpainting and structural editing algorithms. Most such modeling approaches mainly rely on searching for similar patches in the set of available patches. However, the apparent similarity between sufficiently small (e.g., 5×5 pixels) image regions motivates modeling them with a low-dimensional manifold instead and suggests the existence of a simple parametrization for it. Although there exist manifold models for a single patch, it has remained an open problem how to efficiently represent an entire image in terms of its overlapping patches drawn from the underlying non-linear manifold. We propose to consider an image to lie on the intersection of separate manifolds corresponding to different overlapping patches, which we approximate with affine subspaces in a kernel-induced feature space. In contrast to our previous work on this topic, here we solve the intersection and preimage problems simultaneously, ensuring the existence of a suitable solution in the input space. This significantly improves the performance and robustness of our method. Our method incorporates any desired equality constraints on the image, and thus can be used to regularize any linear inverse problem with the manifold intersection model. Our experimental results show nearly perfect compressive sensing reconstruction of images whose patches are well described by a manifold model, as well as exceptional performance in denoising and inpainting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月蚀六花发布了新的文献求助30
刚刚
隐形曼青应助小兔叽采纳,获得10
刚刚
刚刚
田様应助hahhhhhh2采纳,获得10
刚刚
充电宝应助WN采纳,获得10
刚刚
栗子完成签到,获得积分10
刚刚
多情遥完成签到,获得积分10
刚刚
精明寒蕾完成签到,获得积分10
刚刚
1秒前
1秒前
TYG完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
丽小杰完成签到,获得积分10
2秒前
triptalk完成签到,获得积分10
2秒前
墨尘发布了新的文献求助30
2秒前
黑黑黑完成签到,获得积分10
3秒前
3秒前
3秒前
qingxinhuo完成签到 ,获得积分10
3秒前
动听锦程发布了新的文献求助10
4秒前
乐乐应助玖a采纳,获得10
4秒前
杨松发布了新的文献求助10
5秒前
科研通AI6应助人123456采纳,获得10
5秒前
AAA完成签到,获得积分10
5秒前
看不完完成签到,获得积分10
5秒前
6秒前
清脆泥猴桃完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
老实的玉米完成签到,获得积分10
7秒前
zhangjiabin完成签到,获得积分10
7秒前
XIGUA完成签到,获得积分10
7秒前
7秒前
wanci应助Fan采纳,获得30
8秒前
wanci给平淡平萱的求助进行了留言
8秒前
vv完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477776
求助须知:如何正确求助?哪些是违规求助? 4579563
关于积分的说明 14369317
捐赠科研通 4507785
什么是DOI,文献DOI怎么找? 2470190
邀请新用户注册赠送积分活动 1457093
关于科研通互助平台的介绍 1431066