Regularizing inverse problems in image processing with a manifold-based model of overlapping patches

修补 歧管(流体力学) 核(代数) 数学 线性子空间 计算机科学 交叉口(航空) 稳健性(进化) 人工智能 算法 图像(数学) 模式识别(心理学) 纯数学 机械工程 生物化学 化学 工程类 基因 航空航天工程
作者
Yevgen Matviychuk,Shannon M. Hughes
标识
DOI:10.1109/icassp.2014.6854625
摘要

Local patch-based models have been shown to be effective in numerous image processing applications and have become the core of the state-of-the-art denoising, inpainting and structural editing algorithms. Most such modeling approaches mainly rely on searching for similar patches in the set of available patches. However, the apparent similarity between sufficiently small (e.g., 5×5 pixels) image regions motivates modeling them with a low-dimensional manifold instead and suggests the existence of a simple parametrization for it. Although there exist manifold models for a single patch, it has remained an open problem how to efficiently represent an entire image in terms of its overlapping patches drawn from the underlying non-linear manifold. We propose to consider an image to lie on the intersection of separate manifolds corresponding to different overlapping patches, which we approximate with affine subspaces in a kernel-induced feature space. In contrast to our previous work on this topic, here we solve the intersection and preimage problems simultaneously, ensuring the existence of a suitable solution in the input space. This significantly improves the performance and robustness of our method. Our method incorporates any desired equality constraints on the image, and thus can be used to regularize any linear inverse problem with the manifold intersection model. Our experimental results show nearly perfect compressive sensing reconstruction of images whose patches are well described by a manifold model, as well as exceptional performance in denoising and inpainting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思絮完成签到 ,获得积分10
刚刚
所所应助明月清风采纳,获得30
刚刚
zyyz完成签到,获得积分10
刚刚
刚刚
lhs发布了新的文献求助10
刚刚
善良的冰绿完成签到,获得积分10
1秒前
jie完成签到,获得积分20
2秒前
2秒前
Komorebi完成签到 ,获得积分10
3秒前
Koalas应助千寻未央采纳,获得20
3秒前
LZH完成签到,获得积分20
3秒前
威武绮彤完成签到,获得积分10
3秒前
3秒前
4秒前
顾矜应助小豆包采纳,获得10
5秒前
6秒前
阿洁发布了新的文献求助10
6秒前
楚慈楚发布了新的文献求助10
6秒前
MingzhenZhou完成签到,获得积分10
7秒前
LI发布了新的文献求助10
7秒前
7秒前
8秒前
小胡小瑞完成签到,获得积分20
8秒前
xuan完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
yzq发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
Peri发布了新的文献求助10
13秒前
lhs完成签到,获得积分10
13秒前
难过从蕾完成签到,获得积分10
14秒前
丰富老五发布了新的文献求助10
14秒前
15秒前
16秒前
老迟到的乐安完成签到,获得积分10
16秒前
木子发布了新的文献求助10
16秒前
是是是WQ发布了新的文献求助10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125616
求助须知:如何正确求助?哪些是违规求助? 4329366
关于积分的说明 13490944
捐赠科研通 4164258
什么是DOI,文献DOI怎么找? 2282817
邀请新用户注册赠送积分活动 1283900
关于科研通互助平台的介绍 1223242