Regularizing inverse problems in image processing with a manifold-based model of overlapping patches

修补 歧管(流体力学) 核(代数) 数学 线性子空间 计算机科学 交叉口(航空) 稳健性(进化) 人工智能 算法 图像(数学) 模式识别(心理学) 纯数学 基因 工程类 航空航天工程 机械工程 化学 生物化学
作者
Yevgen Matviychuk,Shannon M. Hughes
标识
DOI:10.1109/icassp.2014.6854625
摘要

Local patch-based models have been shown to be effective in numerous image processing applications and have become the core of the state-of-the-art denoising, inpainting and structural editing algorithms. Most such modeling approaches mainly rely on searching for similar patches in the set of available patches. However, the apparent similarity between sufficiently small (e.g., 5×5 pixels) image regions motivates modeling them with a low-dimensional manifold instead and suggests the existence of a simple parametrization for it. Although there exist manifold models for a single patch, it has remained an open problem how to efficiently represent an entire image in terms of its overlapping patches drawn from the underlying non-linear manifold. We propose to consider an image to lie on the intersection of separate manifolds corresponding to different overlapping patches, which we approximate with affine subspaces in a kernel-induced feature space. In contrast to our previous work on this topic, here we solve the intersection and preimage problems simultaneously, ensuring the existence of a suitable solution in the input space. This significantly improves the performance and robustness of our method. Our method incorporates any desired equality constraints on the image, and thus can be used to regularize any linear inverse problem with the manifold intersection model. Our experimental results show nearly perfect compressive sensing reconstruction of images whose patches are well described by a manifold model, as well as exceptional performance in denoising and inpainting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YIN发布了新的文献求助10
1秒前
小张完成签到,获得积分10
2秒前
3秒前
3秒前
coco发布了新的文献求助10
4秒前
6秒前
追寻奄发布了新的文献求助10
6秒前
bkagyin应助YY采纳,获得30
6秒前
7秒前
7秒前
wy驳回了alchol应助
7秒前
9秒前
科研通AI6应助GXH采纳,获得10
10秒前
11秒前
酷波er应助YIN采纳,获得10
11秒前
11秒前
wanci应助Jason采纳,获得10
12秒前
coco完成签到,获得积分10
12秒前
追寻的彩虹完成签到,获得积分10
12秒前
胖虎完成签到,获得积分10
14秒前
NexusExplorer应助大笨蛋采纳,获得100
15秒前
ma完成签到,获得积分10
15秒前
Lucas应助冷酷的大山采纳,获得10
16秒前
非哲发布了新的文献求助10
18秒前
大圈圈完成签到,获得积分10
19秒前
19秒前
不想干活应助着急的大米采纳,获得10
20秒前
饺子完成签到,获得积分10
21秒前
21秒前
ll发布了新的文献求助10
21秒前
YIN完成签到,获得积分10
22秒前
22秒前
22秒前
虾米YYY完成签到,获得积分10
24秒前
小菜鸟发布了新的文献求助10
24秒前
26秒前
852应助哈哈镜阿姐采纳,获得10
26秒前
27秒前
冷酷的大山完成签到,获得积分10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4535953
求助须知:如何正确求助?哪些是违规求助? 3971485
关于积分的说明 12304284
捐赠科研通 3638291
什么是DOI,文献DOI怎么找? 2003081
邀请新用户注册赠送积分活动 1038650
科研通“疑难数据库(出版商)”最低求助积分说明 928038