Regularizing inverse problems in image processing with a manifold-based model of overlapping patches

修补 歧管(流体力学) 核(代数) 数学 线性子空间 计算机科学 交叉口(航空) 稳健性(进化) 人工智能 算法 图像(数学) 模式识别(心理学) 纯数学 基因 工程类 航空航天工程 机械工程 化学 生物化学
作者
Yevgen Matviychuk,Shannon M. Hughes
标识
DOI:10.1109/icassp.2014.6854625
摘要

Local patch-based models have been shown to be effective in numerous image processing applications and have become the core of the state-of-the-art denoising, inpainting and structural editing algorithms. Most such modeling approaches mainly rely on searching for similar patches in the set of available patches. However, the apparent similarity between sufficiently small (e.g., 5×5 pixels) image regions motivates modeling them with a low-dimensional manifold instead and suggests the existence of a simple parametrization for it. Although there exist manifold models for a single patch, it has remained an open problem how to efficiently represent an entire image in terms of its overlapping patches drawn from the underlying non-linear manifold. We propose to consider an image to lie on the intersection of separate manifolds corresponding to different overlapping patches, which we approximate with affine subspaces in a kernel-induced feature space. In contrast to our previous work on this topic, here we solve the intersection and preimage problems simultaneously, ensuring the existence of a suitable solution in the input space. This significantly improves the performance and robustness of our method. Our method incorporates any desired equality constraints on the image, and thus can be used to regularize any linear inverse problem with the manifold intersection model. Our experimental results show nearly perfect compressive sensing reconstruction of images whose patches are well described by a manifold model, as well as exceptional performance in denoising and inpainting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ValarMorghulis完成签到,获得积分10
1秒前
1秒前
aaaaa发布了新的文献求助10
1秒前
好奇的书蛋完成签到,获得积分10
2秒前
3秒前
马冬梅发布了新的文献求助30
3秒前
难过的慕青完成签到,获得积分10
4秒前
超帅凡阳发布了新的文献求助10
5秒前
迅速冬天完成签到,获得积分10
5秒前
桔子皮应助47采纳,获得10
5秒前
7秒前
7秒前
卡卡西应助铜豌豆采纳,获得10
8秒前
8秒前
9秒前
可爱的以松关注了科研通微信公众号
9秒前
赘婿应助123465采纳,获得10
9秒前
9秒前
传奇3应助Summer采纳,获得10
10秒前
无私的芹应助木头人采纳,获得10
10秒前
11秒前
11秒前
超帅凡阳完成签到,获得积分10
12秒前
善学以致用应助PJ采纳,获得10
12秒前
WD完成签到,获得积分10
12秒前
13秒前
13秒前
ZX发布了新的文献求助10
13秒前
zy发布了新的文献求助10
14秒前
benj发布了新的文献求助30
14秒前
俏皮面包发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
WD发布了新的文献求助10
15秒前
汪鸡毛完成签到 ,获得积分10
16秒前
xingchangrui发布了新的文献求助20
17秒前
某只羊发布了新的文献求助10
18秒前
20秒前
李BO完成签到 ,获得积分10
20秒前
鲜艳的靖雁完成签到,获得积分20
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497645
关于积分的说明 11088172
捐赠科研通 3228209
什么是DOI,文献DOI怎么找? 1784718
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801281