Regularizing inverse problems in image processing with a manifold-based model of overlapping patches

修补 歧管(流体力学) 核(代数) 数学 线性子空间 计算机科学 交叉口(航空) 稳健性(进化) 人工智能 算法 图像(数学) 模式识别(心理学) 纯数学 机械工程 生物化学 化学 工程类 基因 航空航天工程
作者
Yevgen Matviychuk,Shannon M. Hughes
标识
DOI:10.1109/icassp.2014.6854625
摘要

Local patch-based models have been shown to be effective in numerous image processing applications and have become the core of the state-of-the-art denoising, inpainting and structural editing algorithms. Most such modeling approaches mainly rely on searching for similar patches in the set of available patches. However, the apparent similarity between sufficiently small (e.g., 5×5 pixels) image regions motivates modeling them with a low-dimensional manifold instead and suggests the existence of a simple parametrization for it. Although there exist manifold models for a single patch, it has remained an open problem how to efficiently represent an entire image in terms of its overlapping patches drawn from the underlying non-linear manifold. We propose to consider an image to lie on the intersection of separate manifolds corresponding to different overlapping patches, which we approximate with affine subspaces in a kernel-induced feature space. In contrast to our previous work on this topic, here we solve the intersection and preimage problems simultaneously, ensuring the existence of a suitable solution in the input space. This significantly improves the performance and robustness of our method. Our method incorporates any desired equality constraints on the image, and thus can be used to regularize any linear inverse problem with the manifold intersection model. Our experimental results show nearly perfect compressive sensing reconstruction of images whose patches are well described by a manifold model, as well as exceptional performance in denoising and inpainting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xuan完成签到,获得积分10
刚刚
婷婷完成签到,获得积分10
1秒前
GarrickO应助cxd采纳,获得20
1秒前
dgygy发布了新的文献求助10
1秒前
1秒前
2秒前
安铸完成签到 ,获得积分10
2秒前
所所应助一张不够花采纳,获得10
2秒前
3秒前
平头张完成签到,获得积分10
3秒前
nannannan发布了新的文献求助10
3秒前
3秒前
3秒前
xuan发布了新的文献求助30
4秒前
5秒前
5秒前
6秒前
deer发布了新的文献求助10
7秒前
air-yi完成签到,获得积分0
7秒前
7秒前
风清扬发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
烟花应助可乐加冰采纳,获得10
8秒前
布丁发布了新的文献求助10
8秒前
七寻笑完成签到,获得积分20
9秒前
9秒前
9秒前
汤锐完成签到,获得积分10
9秒前
10秒前
10秒前
Emilia发布了新的文献求助10
11秒前
情怀应助science_idot采纳,获得10
11秒前
geather发布了新的文献求助10
11秒前
11秒前
小小少年完成签到,获得积分10
11秒前
戴冬梅发布了新的文献求助10
11秒前
邢先生完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351484
求助须知:如何正确求助?哪些是违规求助? 4484581
关于积分的说明 13959628
捐赠科研通 4384162
什么是DOI,文献DOI怎么找? 2408799
邀请新用户注册赠送积分活动 1401373
关于科研通互助平台的介绍 1374874