Regularizing inverse problems in image processing with a manifold-based model of overlapping patches

修补 歧管(流体力学) 核(代数) 数学 线性子空间 计算机科学 交叉口(航空) 稳健性(进化) 人工智能 算法 图像(数学) 模式识别(心理学) 纯数学 机械工程 生物化学 化学 工程类 基因 航空航天工程
作者
Yevgen Matviychuk,Shannon M. Hughes
标识
DOI:10.1109/icassp.2014.6854625
摘要

Local patch-based models have been shown to be effective in numerous image processing applications and have become the core of the state-of-the-art denoising, inpainting and structural editing algorithms. Most such modeling approaches mainly rely on searching for similar patches in the set of available patches. However, the apparent similarity between sufficiently small (e.g., 5×5 pixels) image regions motivates modeling them with a low-dimensional manifold instead and suggests the existence of a simple parametrization for it. Although there exist manifold models for a single patch, it has remained an open problem how to efficiently represent an entire image in terms of its overlapping patches drawn from the underlying non-linear manifold. We propose to consider an image to lie on the intersection of separate manifolds corresponding to different overlapping patches, which we approximate with affine subspaces in a kernel-induced feature space. In contrast to our previous work on this topic, here we solve the intersection and preimage problems simultaneously, ensuring the existence of a suitable solution in the input space. This significantly improves the performance and robustness of our method. Our method incorporates any desired equality constraints on the image, and thus can be used to regularize any linear inverse problem with the manifold intersection model. Our experimental results show nearly perfect compressive sensing reconstruction of images whose patches are well described by a manifold model, as well as exceptional performance in denoising and inpainting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
tjt发布了新的文献求助10
1秒前
汉堡包应助nnnd77采纳,获得10
1秒前
xsj发布了新的文献求助50
1秒前
万事顺遂完成签到,获得积分10
1秒前
1秒前
1秒前
meme17关注了科研通微信公众号
1秒前
Jasper应助危机的慕卉采纳,获得10
2秒前
情怀应助卡蒂狗采纳,获得10
2秒前
科研通AI5应助Shutai采纳,获得10
3秒前
热电CAT发布了新的文献求助10
3秒前
万事顺遂发布了新的文献求助10
4秒前
这有一个超级好听的名字关注了科研通微信公众号
5秒前
naturehome发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
Zzz发布了新的文献求助10
6秒前
汉堡包应助xsj采纳,获得10
6秒前
HHHHHJ完成签到,获得积分10
7秒前
11秒前
11秒前
JJ完成签到 ,获得积分10
12秒前
12秒前
13秒前
香蕉觅云应助阿萨德采纳,获得10
13秒前
科研民工完成签到,获得积分10
14秒前
丘比特应助一丈风采纳,获得10
15秒前
顾涵山发布了新的文献求助20
16秒前
光亮妙之完成签到,获得积分10
17秒前
一坨发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
hadron发布了新的文献求助10
17秒前
打打应助未语的阳光采纳,获得10
17秒前
努力努力发布了新的文献求助10
18秒前
xsj完成签到,获得积分10
18秒前
无敌的兔子宇宙完成签到,获得积分10
19秒前
19秒前
inconnu完成签到,获得积分20
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4867924
求助须知:如何正确求助?哪些是违规求助? 4159763
关于积分的说明 12899013
捐赠科研通 3913930
什么是DOI,文献DOI怎么找? 2149505
邀请新用户注册赠送积分活动 1168039
关于科研通互助平台的介绍 1070459