吸附剂
解吸
吸附
相对湿度
化学工程
材料科学
真空摆动吸附
分析化学(期刊)
湿度
色谱法
化学
变压吸附
有机化学
热力学
工程类
物理
作者
Jan Andre Wurzbacher,Christoph Gebald,Aldo Steinfeld
摘要
A temperature-vacuum swing (TVS) process, capable of extracting pure CO2 from dry and humid atmospheric air, is experimentally analyzed. Adsorption/desorption cycles utilizing a packed bed of a sorbent material made of diamine-functionalized commercial silica gel are performed under equilibrium and non-equilibrium (short-cycle) conditions. Thereby, the CO2 capture capacity of the material is determined over a wide range of operational parameters, namely 10–150 mbarabs desorption pressure, 74–90 °C desorption temperature, and 0–80% relative humidity during adsorption. Up to 158 ml of CO2 (6.8 ml per gram sorbent) with a purity of up to 97.6% is recovered per cycle. Adsorption isotherms of the sorbent material are experimentally determined by thermogravimetry and fitted to isotherm models, which are successfully applied to predict desorption capacities achieved in the TVS process. Under dry conditions, desorption pressures above 100 mbarabs lead to strongly decreasing CO2 capture capacities below 0.03 mmol g−1. Under humid conditions with 40% relative humidity during adsorption, the desorption pressure can be raised to 150 mbarabs with capture capacities remaining above 0.2 mmol g−1. Stable performance of the sorbent material in the TVS process is demonstrated over 40 consecutive adsorption/desorption cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI