Retrofit Flight Control Using an Adaptive Chebyshev Function Approximator

人工神经网络 计算机科学 控制理论(社会学) 自适应控制 切比雪夫滤波器 软件 控制器(灌溉) 切比雪夫多项式 可靠性(半导体) 控制工程 数学优化 工程类 数学 人工智能 控制(管理) 物理 计算机视觉 生物 数学分析 功率(物理) 程序设计语言 量子力学 农学
作者
Sung-Sik Shin,Byoung-Mun Min,Min-Jea Tahk
出处
期刊:Journal of Aerospace Engineering [American Society of Civil Engineers]
卷期号:26 (4): 735-749
标识
DOI:10.1061/(asce)as.1943-5525.0000191
摘要

In this paper, a novel adaptive control approach, named adaptive Chebyshev retrofit control (ACRC), retrofitting an existing baseline controller with an adaptive Chebyshev function approximator is presented. The approximator is composed of a linear combination of a parameter and a basis function. Instead of using neural networks as a function approximator, the new approach utilizes a Chebyshev polynomial as a basis function for function approximation, and a parameter update law is derived via a Lyapunov-like analysis method. The benefits of the proposed method are twofold. First, the computational time is approximately 1.7 times faster than that of the method using the neural network. Second, the implementation is very efficient, because the structure of the approximator is significantly simpler in comparison with those of neural network approaches. Because the complexity of the software is the major contributing factor to software reliability, the high complexity of the implementation of a control algorithm that adopts neural networks could lead to a reduction in software reliability. Therefore, the new adaptive control method is valuable in terms of the improvement in software reliability. In particular, it is important in the field of aerospace control, which requires exceptional reliability for flight control software. Moreover, the short computational time in comparison with neural network approaches is very crucial for small unmanned aerial vehicles that have restricted on-board hardware performance. From simulation results, it is found that the performance of the proposed method in several responses is on par with that of the neural network method in the presence of varying flight conditions. Considering the computation time and simplicity of the proposed method, the authors conclude that the proposed approach is very effective, particularly relative to the neural network method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小情绪应助奥里给采纳,获得10
1秒前
林妹妹完成签到 ,获得积分10
1秒前
2秒前
FashionBoy应助动人的萝采纳,获得30
2秒前
漫漫发布了新的文献求助10
2秒前
开放的从菡关注了科研通微信公众号
2秒前
3秒前
慕青应助lyon采纳,获得10
3秒前
arizaki7发布了新的文献求助10
4秒前
4秒前
UP完成签到,获得积分10
5秒前
善学以致用应助罗大壮采纳,获得10
5秒前
占曼荷发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
10秒前
糊涂涂发布了新的文献求助10
10秒前
10秒前
ding应助xqxqxqxqxqx采纳,获得10
11秒前
11秒前
子车茗应助爱笑的小刺猬采纳,获得30
13秒前
14秒前
小洋完成签到,获得积分20
14秒前
14秒前
arizaki7发布了新的文献求助10
15秒前
粘豆包完成签到,获得积分10
16秒前
Cryer2401完成签到,获得积分10
16秒前
罗大壮发布了新的文献求助10
16秒前
17秒前
木木完成签到,获得积分10
18秒前
占曼荷完成签到,获得积分10
19秒前
20秒前
幸福果汁发布了新的文献求助10
20秒前
北城发布了新的文献求助10
20秒前
一炁完成签到,获得积分10
20秒前
21秒前
songjinyan829发布了新的文献求助10
21秒前
风中小懒虫完成签到,获得积分10
22秒前
粉红豹完成签到,获得积分10
23秒前
23秒前
糊涂的缘分完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087467
求助须知:如何正确求助?哪些是违规求助? 4302837
关于积分的说明 13408929
捐赠科研通 4128209
什么是DOI,文献DOI怎么找? 2260744
邀请新用户注册赠送积分活动 1264924
关于科研通互助平台的介绍 1199253