Retrofit Flight Control Using an Adaptive Chebyshev Function Approximator

人工神经网络 计算机科学 控制理论(社会学) 自适应控制 切比雪夫滤波器 软件 控制器(灌溉) 切比雪夫多项式 可靠性(半导体) 控制工程 数学优化 工程类 数学 人工智能 控制(管理) 物理 计算机视觉 生物 数学分析 功率(物理) 程序设计语言 量子力学 农学
作者
Sung-Sik Shin,Byoung-Mun Min,Min-Jea Tahk
出处
期刊:Journal of Aerospace Engineering [American Society of Civil Engineers]
卷期号:26 (4): 735-749
标识
DOI:10.1061/(asce)as.1943-5525.0000191
摘要

In this paper, a novel adaptive control approach, named adaptive Chebyshev retrofit control (ACRC), retrofitting an existing baseline controller with an adaptive Chebyshev function approximator is presented. The approximator is composed of a linear combination of a parameter and a basis function. Instead of using neural networks as a function approximator, the new approach utilizes a Chebyshev polynomial as a basis function for function approximation, and a parameter update law is derived via a Lyapunov-like analysis method. The benefits of the proposed method are twofold. First, the computational time is approximately 1.7 times faster than that of the method using the neural network. Second, the implementation is very efficient, because the structure of the approximator is significantly simpler in comparison with those of neural network approaches. Because the complexity of the software is the major contributing factor to software reliability, the high complexity of the implementation of a control algorithm that adopts neural networks could lead to a reduction in software reliability. Therefore, the new adaptive control method is valuable in terms of the improvement in software reliability. In particular, it is important in the field of aerospace control, which requires exceptional reliability for flight control software. Moreover, the short computational time in comparison with neural network approaches is very crucial for small unmanned aerial vehicles that have restricted on-board hardware performance. From simulation results, it is found that the performance of the proposed method in several responses is on par with that of the neural network method in the presence of varying flight conditions. Considering the computation time and simplicity of the proposed method, the authors conclude that the proposed approach is very effective, particularly relative to the neural network method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辰123发布了新的文献求助10
1秒前
1秒前
zhaoty完成签到,获得积分10
2秒前
张二狗完成签到,获得积分10
3秒前
搜集达人应助金www采纳,获得10
3秒前
yyyq发布了新的文献求助10
3秒前
一匹野马完成签到,获得积分10
3秒前
3秒前
4秒前
persist给persist的求助进行了留言
5秒前
5秒前
5秒前
朴实伯云发布了新的文献求助10
5秒前
张二狗发布了新的文献求助10
8秒前
香蕉觅云应助123采纳,获得10
8秒前
Ava应助LINDENG2004采纳,获得10
8秒前
8秒前
MollyD发布了新的文献求助10
8秒前
1111发布了新的文献求助10
10秒前
goosnake发布了新的文献求助10
11秒前
爆米花应助一匹野马采纳,获得10
11秒前
在水一方应助yyyq采纳,获得10
11秒前
昏睡的蟠桃给尽如的求助进行了留言
13秒前
yar应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
15秒前
ding应助科研通管家采纳,获得10
15秒前
bkagyin应助weijie采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
15秒前
芝麻糊应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
15秒前
qin希望应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
16秒前
芝麻糊应助科研通管家采纳,获得10
16秒前
科研助手6应助科研通管家采纳,获得10
16秒前
16秒前
qin希望应助科研通管家采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014