Retrofit Flight Control Using an Adaptive Chebyshev Function Approximator

人工神经网络 计算机科学 控制理论(社会学) 自适应控制 切比雪夫滤波器 软件 控制器(灌溉) 切比雪夫多项式 可靠性(半导体) 控制工程 数学优化 工程类 数学 人工智能 控制(管理) 物理 计算机视觉 生物 数学分析 功率(物理) 程序设计语言 量子力学 农学
作者
Sung-Sik Shin,Byoung-Mun Min,Min-Jea Tahk
出处
期刊:Journal of Aerospace Engineering [American Society of Civil Engineers]
卷期号:26 (4): 735-749
标识
DOI:10.1061/(asce)as.1943-5525.0000191
摘要

In this paper, a novel adaptive control approach, named adaptive Chebyshev retrofit control (ACRC), retrofitting an existing baseline controller with an adaptive Chebyshev function approximator is presented. The approximator is composed of a linear combination of a parameter and a basis function. Instead of using neural networks as a function approximator, the new approach utilizes a Chebyshev polynomial as a basis function for function approximation, and a parameter update law is derived via a Lyapunov-like analysis method. The benefits of the proposed method are twofold. First, the computational time is approximately 1.7 times faster than that of the method using the neural network. Second, the implementation is very efficient, because the structure of the approximator is significantly simpler in comparison with those of neural network approaches. Because the complexity of the software is the major contributing factor to software reliability, the high complexity of the implementation of a control algorithm that adopts neural networks could lead to a reduction in software reliability. Therefore, the new adaptive control method is valuable in terms of the improvement in software reliability. In particular, it is important in the field of aerospace control, which requires exceptional reliability for flight control software. Moreover, the short computational time in comparison with neural network approaches is very crucial for small unmanned aerial vehicles that have restricted on-board hardware performance. From simulation results, it is found that the performance of the proposed method in several responses is on par with that of the neural network method in the presence of varying flight conditions. Considering the computation time and simplicity of the proposed method, the authors conclude that the proposed approach is very effective, particularly relative to the neural network method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
swich发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
一一关注了科研通微信公众号
3秒前
帅气难破完成签到 ,获得积分10
3秒前
Akim应助1056720198采纳,获得10
4秒前
潇洒的血茗完成签到 ,获得积分10
4秒前
zz发布了新的文献求助10
4秒前
5秒前
傲娇迎南发布了新的文献求助10
5秒前
未du完成签到,获得积分10
5秒前
5秒前
kendrick677发布了新的文献求助10
5秒前
Daisy完成签到,获得积分10
5秒前
wait完成签到,获得积分10
6秒前
sijiong_han应助lixuanhao采纳,获得10
6秒前
6秒前
无极微光应助Kizuna采纳,获得20
8秒前
wanci应助小鹿采纳,获得10
8秒前
深情安青应助何以故人初采纳,获得10
8秒前
逆光完成签到 ,获得积分10
8秒前
Lucas应助醉熏的绯采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
研友_rLmrgn应助科研通管家采纳,获得10
9秒前
大宝君应助科研通管家采纳,获得20
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735868
求助须知:如何正确求助?哪些是违规求助? 5363199
关于积分的说明 15331638
捐赠科研通 4879999
什么是DOI,文献DOI怎么找? 2622459
邀请新用户注册赠送积分活动 1571448
关于科研通互助平台的介绍 1528243