Retrofit Flight Control Using an Adaptive Chebyshev Function Approximator

人工神经网络 计算机科学 控制理论(社会学) 自适应控制 切比雪夫滤波器 软件 控制器(灌溉) 切比雪夫多项式 可靠性(半导体) 控制工程 数学优化 工程类 数学 人工智能 控制(管理) 功率(物理) 物理 量子力学 农学 计算机视觉 生物 程序设计语言 数学分析
作者
Sung-Sik Shin,Byoung-Mun Min,Min-Jea Tahk
出处
期刊:Journal of Aerospace Engineering [American Society of Civil Engineers]
卷期号:26 (4): 735-749
标识
DOI:10.1061/(asce)as.1943-5525.0000191
摘要

In this paper, a novel adaptive control approach, named adaptive Chebyshev retrofit control (ACRC), retrofitting an existing baseline controller with an adaptive Chebyshev function approximator is presented. The approximator is composed of a linear combination of a parameter and a basis function. Instead of using neural networks as a function approximator, the new approach utilizes a Chebyshev polynomial as a basis function for function approximation, and a parameter update law is derived via a Lyapunov-like analysis method. The benefits of the proposed method are twofold. First, the computational time is approximately 1.7 times faster than that of the method using the neural network. Second, the implementation is very efficient, because the structure of the approximator is significantly simpler in comparison with those of neural network approaches. Because the complexity of the software is the major contributing factor to software reliability, the high complexity of the implementation of a control algorithm that adopts neural networks could lead to a reduction in software reliability. Therefore, the new adaptive control method is valuable in terms of the improvement in software reliability. In particular, it is important in the field of aerospace control, which requires exceptional reliability for flight control software. Moreover, the short computational time in comparison with neural network approaches is very crucial for small unmanned aerial vehicles that have restricted on-board hardware performance. From simulation results, it is found that the performance of the proposed method in several responses is on par with that of the neural network method in the presence of varying flight conditions. Considering the computation time and simplicity of the proposed method, the authors conclude that the proposed approach is very effective, particularly relative to the neural network method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纪元龙完成签到,获得积分10
刚刚
Dawn完成签到,获得积分10
2秒前
6秒前
8秒前
一根藤完成签到,获得积分10
8秒前
上官若男应助怡然灵珊采纳,获得10
11秒前
雪白的灵竹完成签到,获得积分10
12秒前
aDou完成签到 ,获得积分10
13秒前
14秒前
付银薇完成签到,获得积分10
15秒前
留胡子的画板完成签到,获得积分10
19秒前
Miracle发布了新的文献求助10
20秒前
wanci应助科研通管家采纳,获得10
21秒前
无花果应助科研通管家采纳,获得30
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
小尹同学应助科研通管家采纳,获得30
21秒前
Akim应助科研通管家采纳,获得30
21秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得30
21秒前
21秒前
淡淡尔冬应助科研通管家采纳,获得10
21秒前
kiki发布了新的文献求助10
23秒前
万物更始完成签到,获得积分10
23秒前
隐形曼青应助Violet采纳,获得30
25秒前
Miracle完成签到,获得积分10
25秒前
鹅鹅鹅完成签到,获得积分10
29秒前
无花果应助魔幻的凝芙采纳,获得30
29秒前
djh完成签到,获得积分10
30秒前
传奇3应助kiki采纳,获得10
32秒前
科研通AI2S应助kiki采纳,获得10
32秒前
领导范儿应助kiki采纳,获得10
33秒前
haoooooooooooooo应助kiki采纳,获得10
33秒前
Aliothae应助kiki采纳,获得10
33秒前
大模型应助kiki采纳,获得10
33秒前
科目三应助kiki采纳,获得100
33秒前
活力的尔竹应助kiki采纳,获得10
33秒前
34秒前
myyy完成签到 ,获得积分10
35秒前
可心发布了新的文献求助10
36秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152043
求助须知:如何正确求助?哪些是违规求助? 2803339
关于积分的说明 7853343
捐赠科研通 2460804
什么是DOI,文献DOI怎么找? 1310058
科研通“疑难数据库(出版商)”最低求助积分说明 629097
版权声明 601765