能源景观
统计物理学
均方位移
高斯分布
布朗运动
物理
蒙特卡罗方法
扩散
布朗动力学
粒子(生态学)
势能
朗之万动力
经典力学
分子动力学
数学
量子力学
统计
海洋学
地质学
热力学
作者
Florian Evers,Christoph Zunke,Richard D. L. Hanes,Jörg Bewerunge,I. Ladadwa,Andreas Heuer,Stefan U. Egelhaaf
标识
DOI:10.1103/physreve.88.022125
摘要
The dynamics of individual colloidal particles in random potential energy landscapes was investigated experimentally and by Monte Carlo simulations. The value of the potential at each point in the two-dimensional energy landscape follows a Gaussian distribution. The width of the distribution, and hence the degree of roughness of the energy landscape, was varied and its effect on the particle dynamics studied. This situation represents an example of Brownian dynamics in the presence of disorder. In the experiments, the energy landscapes were generated optically using a holographic setup with a spatial light modulator, and the particle trajectories were followed by video microscopy. The dynamics is characterized using, e.g., the time-dependent diffusion coefficient, the mean squared displacement, the van Hove function, and the non-Gaussian parameter. In both experiments and simulations the dynamics is initially diffusive, showing an extended subdiffusive regime at intermediate times before diffusive motion is recovered at very long times. The dependence of the long-time diffusion coefficient on the width of the Gaussian distribution agrees with theoretical predictions. Compared to the dynamics in a one-dimensional potential energy landscape, the localization at intermediate times is weaker and the diffusive regime at long times reached earlier, which is due to the possibility to avoid local maxima in two-dimensional energy landscapes.
科研通智能强力驱动
Strongly Powered by AbleSci AI