概括性
计算机科学
多样性(控制论)
任务(项目管理)
概率逻辑
异构网络
机器学习
人工智能
同种类的
依赖关系(UML)
数据挖掘
数据科学
心理学
电信
无线网络
物理
管理
经济
无线
心理治疗师
热力学
作者
Yang� Yang,Nitesh V. Chawla,Yizhou Sun,Jiawei Hani
标识
DOI:10.1109/icdm.2012.144
摘要
Link prediction is an important task in network analysis, benefiting researchers and organizations in a variety of fields. Many networks in the real world, for example social networks, are heterogeneous, having multiple types of links and complex dependency structures. Link prediction in such networks must model the influence propagating between heterogeneous relationships to achieve better link prediction performance than in homogeneous networks. In this paper, we introduce Multi-Relational Influence Propagation (MRIP), a novel probabilistic method for heterogeneous networks. We demonstrate that MRIP is useful for predicting links in sparse networks, which present a significant challenge due to the severe disproportion of the number of potential links to the number of real formed links. We also explore some factors that can inform the task of classification yet remain unexplored, such as temporal information. In this paper we make use of the temporal-related features by carefully investigating the issues of feasibility and generality. In accordance with our work in unsupervised learning, we further design an appropriate supervised approach in heterogeneous networks. Our experiments on co-authorship prediction demonstrate the effectiveness of our approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI