Integration of prior biological knowledge and epigenetic information enhances the prediction accuracy of the Bayesian Wnt pathway

Wnt信号通路 贝叶斯定理 计算生物学 表观遗传学 贝叶斯网络 判别式 抄写(语言学) 生物 计算机科学 接收机工作特性 贝叶斯概率 朴素贝叶斯分类器 生物信息学 机器学习 人工智能 遗传学 基因 支持向量机 语言学 哲学
作者
Shriprakash Sinha
出处
期刊:Integrative Biology [Oxford University Press]
卷期号:6 (11): 1034-1048 被引量:13
标识
DOI:10.1039/c4ib00124a
摘要

Computational modeling of the Wnt signaling pathway has gained prominence for its use as a diagnostic tool to develop therapeutic cancer target drugs and predict test samples as tumorous/normal. Diagnostic tools entail modeling of the biological phenomena behind the pathway while prediction requires inclusion of factors for discriminative classification. This manuscript develops simple static Bayesian network predictive models of varying complexity by encompassing prior partially available biological knowledge about intra/extracellular factors and incorporating information regarding epigenetic modification into a few genes that are known to have an inhibitory effect on the pathway. Incorporation of epigenetic information enhances the prediction accuracy of test samples in human colorectal cancer. In comparison to the Naive Bayes model where β-catenin transcription complex activation predictions are assumed to correspond to sample predictions, the new biologically inspired models shed light on differences in behavior of the transcription complex and the state of samples. Receiver operator curves and their respective area under the curve measurements obtained from predictions of the state of the test sample and the corresponding predictions of the state of activation of the β-catenin transcription complex of the pathway for the test sample indicate a significant difference between the transcription complex being on (off) and its association with the sample being tumorous (normal). The two-sample Kolmogorov–Smirnov test confirms the statistical deviation between the distributions of these predictions. Hitherto unknown relationship between factors like DKK2, DKK3-1 and SFRP-2/3/5 w.r.t. the β-catenin transcription complex has been inferred using these causal models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陈宏博应助linda采纳,获得10
1秒前
ira发布了新的文献求助10
1秒前
1秒前
执着的冬瓜完成签到 ,获得积分10
1秒前
彩色发布了新的文献求助10
2秒前
2秒前
dimension完成签到,获得积分10
2秒前
今后应助张张采纳,获得10
2秒前
谦让的博发布了新的文献求助10
2秒前
迷路幼枫完成签到 ,获得积分10
3秒前
nzlatto完成签到 ,获得积分10
3秒前
bbbbhr发布了新的文献求助10
3秒前
3秒前
OriC发布了新的文献求助10
3秒前
重要的大有完成签到,获得积分10
3秒前
言屿完成签到,获得积分10
3秒前
苗浩阳发布了新的文献求助10
4秒前
www发布了新的文献求助10
4秒前
科研通AI6应助MA采纳,获得10
5秒前
01发布了新的文献求助10
5秒前
英姑应助k_1采纳,获得10
5秒前
深情安青应助努力的学采纳,获得10
5秒前
5秒前
monned发布了新的文献求助10
6秒前
上官老黑发布了新的文献求助10
6秒前
6秒前
滴滴答答发布了新的文献求助20
6秒前
white发布了新的文献求助10
7秒前
7秒前
英俊的铭应助《子非鱼》采纳,获得10
8秒前
OriC完成签到,获得积分10
8秒前
8秒前
8秒前
传奇3应助段新杰采纳,获得10
9秒前
Caroline发布了新的文献求助10
9秒前
10秒前
就是我完成签到,获得积分10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578243
求助须知:如何正确求助?哪些是违规求助? 4663137
关于积分的说明 14744830
捐赠科研通 4603883
什么是DOI,文献DOI怎么找? 2526739
邀请新用户注册赠送积分活动 1496343
关于科研通互助平台的介绍 1465712