Integration of prior biological knowledge and epigenetic information enhances the prediction accuracy of the Bayesian Wnt pathway

Wnt信号通路 贝叶斯定理 计算生物学 表观遗传学 贝叶斯网络 判别式 抄写(语言学) 生物 计算机科学 接收机工作特性 贝叶斯概率 朴素贝叶斯分类器 生物信息学 机器学习 人工智能 遗传学 基因 支持向量机 语言学 哲学
作者
Shriprakash Sinha
出处
期刊:Integrative Biology [Oxford University Press]
卷期号:6 (11): 1034-1048 被引量:13
标识
DOI:10.1039/c4ib00124a
摘要

Computational modeling of the Wnt signaling pathway has gained prominence for its use as a diagnostic tool to develop therapeutic cancer target drugs and predict test samples as tumorous/normal. Diagnostic tools entail modeling of the biological phenomena behind the pathway while prediction requires inclusion of factors for discriminative classification. This manuscript develops simple static Bayesian network predictive models of varying complexity by encompassing prior partially available biological knowledge about intra/extracellular factors and incorporating information regarding epigenetic modification into a few genes that are known to have an inhibitory effect on the pathway. Incorporation of epigenetic information enhances the prediction accuracy of test samples in human colorectal cancer. In comparison to the Naive Bayes model where β-catenin transcription complex activation predictions are assumed to correspond to sample predictions, the new biologically inspired models shed light on differences in behavior of the transcription complex and the state of samples. Receiver operator curves and their respective area under the curve measurements obtained from predictions of the state of the test sample and the corresponding predictions of the state of activation of the β-catenin transcription complex of the pathway for the test sample indicate a significant difference between the transcription complex being on (off) and its association with the sample being tumorous (normal). The two-sample Kolmogorov–Smirnov test confirms the statistical deviation between the distributions of these predictions. Hitherto unknown relationship between factors like DKK2, DKK3-1 and SFRP-2/3/5 w.r.t. the β-catenin transcription complex has been inferred using these causal models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助啊哦采纳,获得10
刚刚
炼丹师应助Ray采纳,获得20
刚刚
NexusExplorer应助狗宅采纳,获得10
刚刚
刚刚
1秒前
不相变蜜完成签到,获得积分10
1秒前
小管完成签到,获得积分10
2秒前
善学以致用应助LIJIngcan采纳,获得10
2秒前
3秒前
111发布了新的文献求助10
3秒前
万能图书馆应助兴奋蘑菇采纳,获得10
4秒前
怀南完成签到,获得积分10
4秒前
落寞的易绿完成签到,获得积分10
4秒前
干净士晋发布了新的文献求助10
4秒前
yibo发布了新的文献求助30
5秒前
王志新完成签到,获得积分10
6秒前
远方橙发布了新的文献求助30
6秒前
woxiangbiye发布了新的文献求助10
6秒前
科研通AI5应助自信南霜采纳,获得10
7秒前
子星完成签到,获得积分10
7秒前
8秒前
解博童发布了新的文献求助10
8秒前
邢夏之完成签到,获得积分10
8秒前
9秒前
顾矜应助开心的迎海采纳,获得10
9秒前
Swagger完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
我是老大应助sun采纳,获得10
10秒前
充电宝应助灵巧晓亦采纳,获得10
11秒前
木几木几发布了新的文献求助30
11秒前
风衣拖地完成签到 ,获得积分10
12秒前
12秒前
方老师完成签到,获得积分10
12秒前
彩色的笑旋完成签到,获得积分20
12秒前
wanci应助干净士晋采纳,获得10
13秒前
做好自己发布了新的文献求助10
13秒前
狗宅发布了新的文献求助10
14秒前
14秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590