Integration of prior biological knowledge and epigenetic information enhances the prediction accuracy of the Bayesian Wnt pathway

Wnt信号通路 贝叶斯定理 计算生物学 表观遗传学 贝叶斯网络 判别式 抄写(语言学) 生物 计算机科学 接收机工作特性 贝叶斯概率 朴素贝叶斯分类器 生物信息学 机器学习 人工智能 遗传学 基因 支持向量机 语言学 哲学
作者
Shriprakash Sinha
出处
期刊:Integrative Biology [Oxford University Press]
卷期号:6 (11): 1034-1048 被引量:13
标识
DOI:10.1039/c4ib00124a
摘要

Computational modeling of the Wnt signaling pathway has gained prominence for its use as a diagnostic tool to develop therapeutic cancer target drugs and predict test samples as tumorous/normal. Diagnostic tools entail modeling of the biological phenomena behind the pathway while prediction requires inclusion of factors for discriminative classification. This manuscript develops simple static Bayesian network predictive models of varying complexity by encompassing prior partially available biological knowledge about intra/extracellular factors and incorporating information regarding epigenetic modification into a few genes that are known to have an inhibitory effect on the pathway. Incorporation of epigenetic information enhances the prediction accuracy of test samples in human colorectal cancer. In comparison to the Naive Bayes model where β-catenin transcription complex activation predictions are assumed to correspond to sample predictions, the new biologically inspired models shed light on differences in behavior of the transcription complex and the state of samples. Receiver operator curves and their respective area under the curve measurements obtained from predictions of the state of the test sample and the corresponding predictions of the state of activation of the β-catenin transcription complex of the pathway for the test sample indicate a significant difference between the transcription complex being on (off) and its association with the sample being tumorous (normal). The two-sample Kolmogorov–Smirnov test confirms the statistical deviation between the distributions of these predictions. Hitherto unknown relationship between factors like DKK2, DKK3-1 and SFRP-2/3/5 w.r.t. the β-catenin transcription complex has been inferred using these causal models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
miaomiao完成签到,获得积分10
1秒前
lcc完成签到,获得积分10
1秒前
2秒前
4秒前
科目三应助帅气一刀采纳,获得10
4秒前
wang11完成签到,获得积分10
5秒前
无私小小完成签到,获得积分10
6秒前
yutian完成签到,获得积分10
7秒前
8秒前
小鬼丶发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
11秒前
首席或雪月完成签到,获得积分10
11秒前
皮凡发布了新的文献求助10
12秒前
12秒前
着急的棉花糖完成签到,获得积分20
14秒前
14秒前
旺仔小馒头完成签到 ,获得积分10
14秒前
风清扬发布了新的文献求助10
14秒前
LULU吖完成签到 ,获得积分10
15秒前
彭于晏应助李晓凤采纳,获得10
16秒前
帅气一刀发布了新的文献求助10
16秒前
威猛先生完成签到,获得积分10
17秒前
小此君发布了新的文献求助10
17秒前
番茄鱼完成签到 ,获得积分10
17秒前
小米发布了新的文献求助10
18秒前
RuiLi完成签到,获得积分10
18秒前
朵朵完成签到,获得积分10
19秒前
凝眸处应助忐忑的如冰采纳,获得10
19秒前
张鑫发布了新的文献求助10
19秒前
19秒前
21秒前
玛卡巴卡发布了新的文献求助10
21秒前
发嗲的白竹关注了科研通微信公众号
22秒前
帅气一刀完成签到,获得积分10
23秒前
yuanhao发布了新的文献求助10
23秒前
结实的凝天完成签到,获得积分10
23秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501188
求助须知:如何正确求助?哪些是违规求助? 4597536
关于积分的说明 14459486
捐赠科研通 4530972
什么是DOI,文献DOI怎么找? 2483024
邀请新用户注册赠送积分活动 1466722
关于科研通互助平台的介绍 1439335