清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Integration of prior biological knowledge and epigenetic information enhances the prediction accuracy of the Bayesian Wnt pathway

Wnt信号通路 贝叶斯定理 计算生物学 表观遗传学 贝叶斯网络 判别式 抄写(语言学) 生物 计算机科学 接收机工作特性 贝叶斯概率 朴素贝叶斯分类器 生物信息学 机器学习 人工智能 遗传学 基因 支持向量机 语言学 哲学
作者
Shriprakash Sinha
出处
期刊:Integrative Biology [Oxford University Press]
卷期号:6 (11): 1034-1048 被引量:13
标识
DOI:10.1039/c4ib00124a
摘要

Computational modeling of the Wnt signaling pathway has gained prominence for its use as a diagnostic tool to develop therapeutic cancer target drugs and predict test samples as tumorous/normal. Diagnostic tools entail modeling of the biological phenomena behind the pathway while prediction requires inclusion of factors for discriminative classification. This manuscript develops simple static Bayesian network predictive models of varying complexity by encompassing prior partially available biological knowledge about intra/extracellular factors and incorporating information regarding epigenetic modification into a few genes that are known to have an inhibitory effect on the pathway. Incorporation of epigenetic information enhances the prediction accuracy of test samples in human colorectal cancer. In comparison to the Naive Bayes model where β-catenin transcription complex activation predictions are assumed to correspond to sample predictions, the new biologically inspired models shed light on differences in behavior of the transcription complex and the state of samples. Receiver operator curves and their respective area under the curve measurements obtained from predictions of the state of the test sample and the corresponding predictions of the state of activation of the β-catenin transcription complex of the pathway for the test sample indicate a significant difference between the transcription complex being on (off) and its association with the sample being tumorous (normal). The two-sample Kolmogorov–Smirnov test confirms the statistical deviation between the distributions of these predictions. Hitherto unknown relationship between factors like DKK2, DKK3-1 and SFRP-2/3/5 w.r.t. the β-catenin transcription complex has been inferred using these causal models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
t铁核桃1985完成签到 ,获得积分0
刚刚
1秒前
7秒前
研友_VZG7GZ应助gengsumin采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
20秒前
BowieHuang应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
杨杨发布了新的文献求助30
22秒前
禹山河完成签到 ,获得积分20
25秒前
一个小胖子完成签到,获得积分10
38秒前
研友_LkD29n完成签到 ,获得积分10
55秒前
123完成签到,获得积分10
56秒前
1分钟前
1分钟前
RC发布了新的文献求助10
1分钟前
秋秋完成签到 ,获得积分10
1分钟前
星辰大海应助RC采纳,获得10
1分钟前
吴静完成签到 ,获得积分10
1分钟前
1分钟前
lingling完成签到 ,获得积分10
1分钟前
雪花完成签到 ,获得积分10
1分钟前
情怀应助葡萄酸奶冻采纳,获得10
1分钟前
2分钟前
77完成签到 ,获得积分10
2分钟前
mudiboyang完成签到,获得积分10
2分钟前
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
gengsumin发布了新的文献求助10
2分钟前
科研通AI6应助gengsumin采纳,获得10
2分钟前
波里舞完成签到 ,获得积分10
2分钟前
2分钟前
SJJ应助白华苍松采纳,获得10
2分钟前
2分钟前
Lily发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590635
求助须知:如何正确求助?哪些是违规求助? 4676266
关于积分的说明 14795430
捐赠科研通 4634208
什么是DOI,文献DOI怎么找? 2532871
邀请新用户注册赠送积分活动 1501349
关于科研通互助平台的介绍 1468741