Loss of nitrogen is a concern when welding nitrogen strengthened stainless steel alloys. Building on the current understanding of the underlying mechanisms, a three-dimensional simulation of conduction mode laser weld pool development using the volume of fluid technique was developed. Weld pools formed by a moving Gaussian heat input for two different laser power densities were simulated and the transport and surface desorption of nitrogen was tracked using nitrogen macroparticles. The penetration depth and width of the weld pool predicted by the simulation was comparable to the data derived from macrographs of welds made on nitronic 40 alloy. Additionally, the 25–32% predicted decrease in nitrogen composition of the weld fusion zone by the new rate law is comparable to the literature.