金属有机化学
化学
催化作用
均相催化
过渡金属
配位复合体
同种类的
配体(生物化学)
第2组金属有机化学
有机化学
组合化学
金属
分子
受体
物理
热力学
生物化学
标识
DOI:10.1002/1521-3773(20020415)41:8<1290::aid-anie1290>3.0.co;2-y
摘要
N-Heterocyclic carbenes have become universal ligands in organometallic and inorganic coordination chemistry. They not only bind to any transition metal, be it in low or high oxidation states, but also to main group elements such as beryllium, sulfur, and iodine. Because of their specific coordination chemistry, N-heterocyclic carbenes both stabilize and activate metal centers in quite different key catalytic steps of organic syntheses, for example, C-H activation, C-C, C-H, C-O, and C-N bond formation. There is now ample evidence that in the new generation of organometallic catalysts the established ligand class of organophosphanes will be supplemented and, in part, replaced by N-heterocyclic carbenes. Over the past few years, this chemistry has been the field of vivid scientific competition, and yielded previously unexpected successes in key areas of homogeneous catalysis. From the work in numerous academic laboratories and in industry, a revolutionary turning point in oraganometallic catalysis is emerging.
科研通智能强力驱动
Strongly Powered by AbleSci AI