安普克
骨骼肌
内分泌学
皮质酮
内科学
信号转导
化学
生物
细胞生物学
蛋白激酶A
医学
磷酸化
激素
作者
G. Nathan Nakken,Daniel L. Jacobs,David M. Thomson,Natasha Fillmore,W. W. Winder
标识
DOI:10.1152/japplphysiol.00906.2009
摘要
Cushing's syndrome is characterized by marked central obesity and insulin insensitivity, effects opposite those seen with chronic AMP-activated protein kinase (AMPK) activation. This study was designed to determine whether chronic exposure to excess glucocorticoids influences LKB1/AMPK signaling in skeletal muscle. Corticosterone pellets were implanted subcutaneously in rats (hypercorticosteronemia, Hypercort) for 2 wk. Controls were sham operated and fed ad libitum or were sham operated and food restricted (pair-weighted group, Pair) to produce body weights similar to Hypercort rats. At the end of the 2-wk treatment period, rats were anesthetized, and the right gastrocnemius-plantaris (gastroc) and soleus muscles were removed. Left muscles were removed after electrical stimulation for 5 min. No significant differences were noted between treatment groups in ATP, creatine phosphate, or LKB1 activity. The α- and β-subunit isoforms were not significantly influenced in gastroc by corticosterone treatment. Expression of the γ3-subunit decreased, and γ1- and γ2-subunit expression increased. Both α2-AMPK and α1-AMPK activities were increased in the gastroc in response to electrical stimulation, but the magnitude of the increase was less for α2 in the Hypercort rats. Despite elevated plasma insulin and elevated plasma leptin in the Hypercort rats, phosphorylation of TBC1D1 was lower in both resting and stimulated muscle compared with controls. Malonyl-CoA content was elevated in gastroc muscles of resting Hypercort rats. These changes in response to excess glucocorticoids could be responsible, in part, for the decrease in insulin sensitivity and adiposity seen in Cushing's syndrome.
科研通智能强力驱动
Strongly Powered by AbleSci AI