清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prototype Sodium-Ion Batteries Using Air-Stable and Co/Ni-Free O3-Layered Metal Oxide Cathode

阴极 氧化物 材料科学 金属 离子 化学工程 无机化学 冶金 化学 电气工程 工程类 有机化学
出处
期刊:Meeting abstracts
标识
DOI:10.1149/ma2016-01/2/296
摘要

at an average storage voltage of 3.2 V with long cycle life. When coupled with hard carbon anode, a prototype rechargeable sodium-ion battery offers an energy density of 210 Wh kg −1 , a round-trip energy effi ciency of 90%, high rate capability, and excellent cycling stability. These desired performances make this system to be closer to the level of practical applications. The Na 0.9 [Cu 0.22 Fe 0.30 Mn 0.48 ]O 2 (Na 0.9 [Cu II 0.22 Fe III 0.30 Mn III 0.16 Mn IV 0.32 ]O 2 ) material was synthesized by a simple solid-state reaction at 850 °C in air atmosphere using precursors of Na 2 CO 3 , CuO, Fe 2 O 3 , and Mn 2 O 3 . The crystal structure of the as-synthesized material was determined by X-ray diffraction (XRD) as shown in Figure 1 a together with its refi nement results by the Rietveld method (see Table S1, Supporting Information). It can be seen that all the Bragg diffraction peaks are in excellent agreement with the JC DS No. 01-0821495 (O3-type α-NaFeO 2 ) and can be indexed to a hexagonal layered structure with a space group of 3 R m − , indicative of a typical O3-type layered structure (note that the letter “O” refers to the Na coordination environment of octahedral site whereas the number “3” refers to the number of MO 2 slab according to Delmas’ notation. [ 13 ] A schematic illustration of the O3-type structure is also shown in Figure 1 b. The structure refi nement gives the lattice parameters a = 2.9587(7) A, c = 16.3742(6) A. The lattice parameter of c -axis is slightly larger than that of other O3-type materials [ 5f–h , 6b , 8a ] because the Na content is less than 1. The inductively coupled plasma (ICP) result confi rms the composition of Na 0.89 [Cu 0.22 Fe 0.30 Mn 0.48 ]O 2 (see Table S2, Supporting Information). The morphology of the resulting sample is shown in Figure 1 c. The distribution of the particle size is in the range of 10–30 μm with about 3 μm sized primary particle agglomerations together (Figure 1 d). Most importantly, unlike other O3-type materials, [ 4–9,12 ] this material is very stable against water. In order to confi rm this, we intentionally design an accelerated aging experiment as described in the Experimental Section which was verifi ed by LiMO 2 as shown in Figure S1 (Supporting Information). We placed the as-synthesized material in deionized water for 3 d and then dried the material at 100 °C for overnight. The obtained material was checked by XRD again. It can be seen that the XRD pattern is nearly identical to that of the as-synthesized material, which is very different from other O3-type materials as shown in Figure S2 (Supporting Information). These results suggest that the O3-Na 0.9 [Cu 0.22 Fe 0.30 Mn 0.48 ]O 2 is very stable against water. Furthermore, after the material was stored in air for one month Large-scale electrical energy storage systems are one of the core technologies in renewable energies and smart grid, among which sodium-ion batteries show great promise due to the abundant sodium resources. Layered metal oxides (of general formula: A x MO 2 , where A = Li, Na; M = Co, Ni, Mn, Cr, Fe, etc.) with alternating alkali metal layer and transition metal layer have long been of particular interest since the early 1980s as an important class of cathode materials for rechargeable batteries due to their easy synthesis and high energy density. [ 1 ] One of the most successful examples is LiCoO 2 , [ 1a ] which is commonly used as a cathode in lithium-ion batteries with the highest volumetric energy density for portable electronic devices. Its metal substituted materials (LiCo 1− x − y − z Ni x Mn y Al z O 2 ) are being used in power batteries for electric vehicles. In the case of sodiumion batteries operated at room temperature which are proposed for large-scale electrical energy storage owing to the naturally abundant sodium resources in recent years. [ 2,3 ] Na x CoO 2 that can electrochemically and reversibly intercalate Na is the fi rst example, [ 1b ] then a large number of layered metal oxides have been extensively exploited. [ 4–12 ] However, the practical applications have been hindered by two major challenges. First, unlike LiMO 2 , almost all the Na x MO 2 are not stable against moisture (either they can be oxidized by water or water/carbon dioxide molecules can be intercalated into alkali metal layer). [ 4–9,11,12 ]

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温馨家园完成签到 ,获得积分10
14秒前
uo发布了新的文献求助20
18秒前
48秒前
Criminology34应助科研通管家采纳,获得10
53秒前
Criminology34应助科研通管家采纳,获得10
53秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
Criminology34应助科研通管家采纳,获得10
54秒前
Criminology34应助科研通管家采纳,获得10
54秒前
完美世界应助科研通管家采纳,获得20
54秒前
Criminology34应助科研通管家采纳,获得10
54秒前
uracil97完成签到,获得积分10
59秒前
1分钟前
1分钟前
幸运小猫发布了新的文献求助10
1分钟前
优美香露发布了新的文献求助10
1分钟前
方白秋完成签到,获得积分0
1分钟前
温柔冰岚完成签到 ,获得积分10
1分钟前
多啦啦完成签到,获得积分10
2分钟前
2分钟前
奥斯卡完成签到,获得积分0
2分钟前
笑声像鸭子叫完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
奋斗的小研完成签到,获得积分10
3分钟前
fighting发布了新的文献求助10
3分钟前
雨城完成签到 ,获得积分10
3分钟前
fighting发布了新的文献求助10
4分钟前
fighting完成签到,获得积分10
4分钟前
4分钟前
Able完成签到,获得积分10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
幸运小猫完成签到,获得积分10
4分钟前
laohei94_6完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706503
求助须知:如何正确求助?哪些是违规求助? 5174433
关于积分的说明 15246998
捐赠科研通 4859993
什么是DOI,文献DOI怎么找? 2608303
邀请新用户注册赠送积分活动 1559220
关于科研通互助平台的介绍 1517002