亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Characterizing the Mechanism of Tumor Suppression by PBRM1 in Clear Cell Renal Cell Carcinoma

肾透明细胞癌 癌症研究 细胞培养 细胞 肾细胞癌 细胞生长 生物 癌症 分子生物学 医学 内科学 遗传学
作者
David A. Schoenfeld
标识
DOI:10.7916/d8b56jjx
摘要

Characterizing the Mechanism of Tumor Suppression by PBRM1 in Clear Cell Renal Cell Carcinoma David Schoenfeld In this study, we investigated the mechanisms by which PBRM1 functions as a tumor suppressor in clear cell renal cell carcinoma. PBRM1, also known as BAF180 or Polybromo, is a member of the PBAF SWI/SNF chromatin remodeling complex. Cancer sequencing studies have revealed that SWI/SNF components are widely mutated in cancer. PBRM1 is recurrently mutated in various human malignancies, but it has a particularly high mutation rate in clear cell renal cell carcinoma: ~40% of clear cell renal cell carcinomas have a PBRM1 mutation, making it the second most highly mutated gene in clear cell renal cell carcinoma behind VHL. Although many recent studies have looked at how other SWI/SNF components function in cancer control, relatively little is known about the tumor suppressive mechanisms of PBRM1 in clear cell renal cell carcinoma. To investigate PBRM1 function, we manipulated its expression in clear cell renal cell carcinoma cell lines. In cell lines with intact PBRM1, we stably knocked down its expression using shRNA. In a cell line with mutant PBRM1, we stably restored expression of the wild-type protein. We found that PBRM1 deficiency significantly enhanced the growth properties of cells, but only when the cells were grown under stressful conditions, such as reduced serum or a 3-D culture environment. To investigate genes and pathways influenced by PBRM1 that may confer this growth advantage, we compared gene expression differences in the clear cell renal cell carcinoma cell lines and murine embryonic fibroblasts with or without PBRM1. We found that PBRM1 regulated numerous cancer-related genes and pathways. One gene, ALDH1A1, was consistently upregulated with PBRM1 deficiency across our cell lines. Further expression analysis using two different clear cell renal cell carcinoma primary tumor datasets revealed that PBRM1 mutation in primary tumors was also associated with higher ALDH1A1 levels. ALDH1A1, or aldehyde dehydrogenase 1, is part of the retinoic acid metabolic pathway and irreversibly converts retinaldehyde to retinoic acid. It functions in hematopoietic stem cell development, white versus brown fat programming, and insulin signaling. Numerous studies have also identified ALDH1A1 as a marker of tumor-initiating cells, also known as cancer stem cells. Not much is known about the regulation of ALDH1A1 expression in cancer, and it has not previously been linked to PBRM1 or SWI/SNF. We confirmed that stable knockdown of PBRM1 in clear cell renal cell carcinoma cell lines resulted in higher ALDH1A1 mRNA and protein expression, and also higher ALDH1-class enzyme activity. Alternatively, reexpression of wild-type PBRM1, but not cancer-associated mutant PBRM1, lowered ALDH1A1 expression and activity in the PBRM1-mutant line. Additionally, inhibiting ALDH1A1 or knocking it down in the context of PBRM1 deficiency reduced anchorage-independent growth, while over-expressing ALDH1A1 in the PBRM1-normal setting increased tumorsphere-forming capacity. These results suggest that ALDH1A1 is not only a marker of tumor-initiating cells, but can also increase the tumorigenic potential of cells. Based on our gene expression analysis, we additionally explored PBRM1 regulation of the EGFR and IFN pathways. PBRM1 decreased total EGFR protein levels and dampened downstream signaling. These changes had functional consequences, as PBRM1 deficiency led to faster growth in response to EGF stimulation. However, it did not create a setting of oncogenic addiction, as PBRM1 deficient cells were also more resistant to EGFR inhibition. Alternatively, PBRM1 deficiency reduced basal and IFNαinduced levels of IFI27, a pro-apoptotic interferon response gene, and made cells more resistant to growth inhibition by IFNα. PBRM1 mutations in cancer would thus be expected to have wide-ranging effects on a cell, and the targeting of any one specific downstream pathway might have limited efficacy. Finally, we investigated the molecular mechanisms of how PBRM1 deficiency could alter transcription, keeping in mind that PBRM1 is one subunit of the larger PBAF complex. In our clear cell renal cell carcinoma cell lines, we found that mRNA and protein levels of another PBAF-specific subunit, ARID2, increased with PBRM1 deficiency. PBRM1 mutation in primary tumors was also associated with significantly higher ARID2 expression. Immunoprecipitation and glycerol gradient fractionation experiments suggested that more ARID2 may associate with the SWI/SNF components BRG1 and SNF5 after PBRM1 knockdown. ARID2 ChIP-seq analysis revealed that this remnant PBAF-like complex was bound to fewer locations in the genome, and its binding locations were broadly redistributed. Both gained and lost ARID2 binding were associated with differential gene expression, of both upregulated and downregulated genes, indicating that the genomic context influences whether PBAF-binding is activating or repressive. Interestingly, we also found that ARID2 was required for some of the pro-tumorigenic changes associated with PBRM1 deficiency, such as upregulation of ALDH1A1 and EGFR levels, but not others, such as decreased IFI27 levels, implying alternative modes of transcriptional regulation. In total, this study implicates PBRM1 in the regulation of numerous cancer-related genes and pathways in clear cell renal cell carcinoma. PBRM1 mutation would alter the genomic binding of a residual PBAF-like complex containing ARID2, leading to transcriptional changes that promote tumor formation and growth. A better understanding of this oncogenic mechanism may reveal novel therapeutic

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分10
13秒前
23秒前
li发布了新的文献求助10
28秒前
makabaka完成签到 ,获得积分10
45秒前
56秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
nanfang完成签到 ,获得积分10
1分钟前
www完成签到,获得积分10
1分钟前
1分钟前
Qvby3完成签到 ,获得积分10
1分钟前
拼搏的败完成签到 ,获得积分10
1分钟前
九哥发布了新的文献求助10
2分钟前
3分钟前
Lynn完成签到,获得积分0
3分钟前
3分钟前
3分钟前
3分钟前
allenpp发布了新的文献求助10
4分钟前
小蘑菇应助SCT采纳,获得10
4分钟前
小田完成签到,获得积分10
4分钟前
4分钟前
4分钟前
Bin发布了新的文献求助10
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
英俊的铭应助科研通管家采纳,获得10
5分钟前
情怀应助科研通管家采纳,获得30
5分钟前
allenpp完成签到,获得积分10
5分钟前
Lynn发布了新的文献求助10
5分钟前
大方的荟完成签到,获得积分10
5分钟前
Bin完成签到,获得积分10
5分钟前
怕黑行恶完成签到,获得积分10
5分钟前
所所应助ys采纳,获得10
5分钟前
LSL丶完成签到,获得积分10
5分钟前
6分钟前
6分钟前
梦醒发布了新的文献求助10
6分钟前
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460082
求助须知:如何正确求助?哪些是违规求助? 3054376
关于积分的说明 9041875
捐赠科研通 2743741
什么是DOI,文献DOI怎么找? 1505182
科研通“疑难数据库(出版商)”最低求助积分说明 695609
邀请新用户注册赠送积分活动 694864