Theoretical Understanding of the Reaction Mechanism of SiO2 Atomic Layer Deposition

原子层沉积 材料科学 微电子 路易斯酸 薄膜 纳米技术 化学 催化作用 有机化学
作者
Guoyong Fang,Lina Xu,Jing Ma,Aidong Li
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:28 (5): 1247-1255 被引量:41
标识
DOI:10.1021/acs.chemmater.5b04422
摘要

Atomic layer deposition (ALD) is a powerful nanofabrication technique for the preparation of uniform, conformal, and ultrathin films and allows accurate control of the composition and thickness of thin films at the atomic level. To date, ALD has been used for the growth of various materials, including oxides, nitrides, sulfides, metals, elements, compound semiconductors, and organic and organic–inorganic hybrid materials. As one of the most important inorganic materials, silicon dioxide (SiO2) has been used in the fields of microelectronics, catalysis, and energy storage and conversion. Various SiO2 ALD methods have been developed, which have expanded the research and applications of ALD chemistry and technology. Recent advances concerning the reaction mechanisms of SiO2 ALD have further deepened our understanding of the surface chemistry and related catalysis in the ALD of SiO2 and other oxides. Thin films of SiO2 can be obtained by means of thermal ALD and energy-enhanced ALD. Thermal ALD of SiO2 includes H2O-based ALD without a catalyst, room-temperature ALD (RT-ALD) catalyzed by a Lewis base, and rapid ALD (RALD) catalyzed by a Lewis acid. Energy-enhanced ALD of SiO2 encompasses plasma-enhanced ALD and O3-based ALD using aminosilane. In this review, we highlight the significance and advantages of ALD and introduce many methods of SiO2 ALD. Subsequently, theoretical advances concerning reaction mechanisms of SiO2 ALD are summarized. The related catalysis phenomena are highlighted, and their possible applications are speculated upon. Finally, a conclusion and perspective on the catalysis in the ALD growth of SiO2 is provided. It is expected that theoretical research on SiO2 ALD will enhance our comprehension of the chemistry and catalysis pertaining to ALD, provide a guide for the design of more effective Si precursors for SiO2 ALD, and lead to further improvement in the ALD preparation of other oxides and their nanolaminates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贰鸟应助jojo采纳,获得20
1秒前
量子星尘发布了新的文献求助30
3秒前
隐形曼青应助唠叨的白曼采纳,获得10
3秒前
3秒前
3秒前
所所应助如初采纳,获得10
3秒前
科目三应助QinQin采纳,获得10
4秒前
4秒前
无花果应助优美紫槐采纳,获得10
4秒前
熊冰清完成签到,获得积分20
4秒前
小二郎应助lzg采纳,获得10
4秒前
深情安青应助那么采纳,获得10
5秒前
研友_VZG7GZ应助周才采纳,获得10
5秒前
曾经的建辉完成签到,获得积分10
5秒前
6秒前
7秒前
LZH发布了新的文献求助10
8秒前
果果发布了新的文献求助30
9秒前
9秒前
9秒前
10秒前
柯不正发布了新的文献求助30
10秒前
kei发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
zzc发布了新的文献求助10
12秒前
戈屿完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
Jbiolover发布了新的文献求助10
13秒前
13秒前
HHH发布了新的文献求助10
14秒前
好看的花花鱼完成签到 ,获得积分10
14秒前
16秒前
pipiap发布了新的文献求助10
16秒前
敢敢完成签到 ,获得积分10
17秒前
18秒前
19秒前
茶卡发布了新的文献求助30
19秒前
哦豁完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730272
求助须知:如何正确求助?哪些是违规求助? 5322398
关于积分的说明 15318370
捐赠科研通 4876855
什么是DOI,文献DOI怎么找? 2619709
邀请新用户注册赠送积分活动 1569121
关于科研通互助平台的介绍 1525755