亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The unexpected structure of the designed protein Octarellin V.1 forms a challenge for protein structure prediction tools

蛋白质结构预测 蛋白质结构 生物信息学 蛋白质设计 计算机科学 人工智能 排名(信息检索) 蛋白质折叠 结构基因组学 计算生物学 生物 生物化学 基因
作者
Maximiliano Figueroa,Mike Sleutel,Marylène Vandevenne,Gregory Parvizi,Sophie Attout,Olivier Jacquin,Julie Vandenameele,Axel W. Fischer,Christian Damblon,Erik Goormaghtigh,Marie Valerio‐Lepiniec,Agathe Urvoas,D. Durand,Els Pardon,Jan Steyaert,Philippe Minard,Dominique Maes,Jens Meiler,André Matagne,Joseph Martial,Cécile Van de Weerdt
出处
期刊:Journal of Structural Biology [Elsevier BV]
卷期号:195 (1): 19-30 被引量:18
标识
DOI:10.1016/j.jsb.2016.05.004
摘要

Despite impressive successes in protein design, designing a well-folded protein of more 100 amino acids de novo remains a formidable challenge. Exploiting the promising biophysical features of the artificial protein Octarellin V, we improved this protein by directed evolution, thus creating a more stable and soluble protein: Octarellin V.1. Next, we obtained crystals of Octarellin V.1 in complex with crystallization chaperons and determined the tertiary structure. The experimental structure of Octarellin V.1 differs from its in silico design: the (αβα) sandwich architecture bears some resemblance to a Rossman-like fold instead of the intended TIM-barrel fold. This surprising result gave us a unique and attractive opportunity to test the state of the art in protein structure prediction, using this artificial protein free of any natural selection. We tested 13 automated webservers for protein structure prediction and found none of them to predict the actual structure. More than 50% of them predicted a TIM-barrel fold, i.e. the structure we set out to design more than 10years ago. In addition, local software runs that are human operated can sample a structure similar to the experimental one but fail in selecting it, suggesting that the scoring and ranking functions should be improved. We propose that artificial proteins could be used as tools to test the accuracy of protein structure prediction algorithms, because their lack of evolutionary pressure and unique sequences features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
44秒前
量子星尘发布了新的文献求助10
55秒前
wanci应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Magali发布了新的文献求助10
1分钟前
blenx发布了新的文献求助10
1分钟前
1分钟前
完美世界应助竹子采纳,获得10
1分钟前
1分钟前
老石完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
hairgod完成签到,获得积分10
1分钟前
竹子发布了新的文献求助10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
烟花应助望远Arena采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
望远Arena发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI5应助blenx采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助150
4分钟前
神勇朝雪完成签到,获得积分10
4分钟前
满意的伊完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660994
求助须知:如何正确求助?哪些是违规求助? 3222200
关于积分的说明 9743994
捐赠科研通 2931798
什么是DOI,文献DOI怎么找? 1605221
邀请新用户注册赠送积分活动 757760
科研通“疑难数据库(出版商)”最低求助积分说明 734503